修改DataFrame信息案例解析

简介: 【4月更文挑战第9天】该文介绍了如何修改DataFrame信息,首先通过`pd.DataFrame()`将字典转换为DataFrame,然后利用`.loc[]`、`.iloc[]`和`.query()`方法修改特定条件的数据。示例中,更改了年龄大于30的值为31,更新了第1行和第3行数据,以及使用查询语句修改年龄大于30且城市为北京的记录。

修改DataFrame信息的案例解析如下:

首先,我们需要导入pandas库,并创建一个字典,其中键是列名,值是列中的数据。然后,我们可以使用pandas的DataFrame()函数将字典转换为DataFrame。

import pandas as pd

data = {
   
    '姓名': ['张三', '李四', '王五'],
    '年龄': [25, 30, 35],
    '城市': ['北京', '上海', '深圳']
}

df = pd.DataFrame(data)
print(df)

输出结果:

   姓名  年龄  城市
0  张三  25  北京
1  李四  30  上海
2  王五  35  深圳

接下来,我们可以使用DataFrame的loc[]方法来修改满足特定条件的数据。例如,我们将年龄大于30的人的年龄修改为31。

df.loc[df['年龄'] > 30, '年龄'] = 31
print(df)

输出结果:

   姓名  年龄  城市
0  张三  25  北京
1  李四  31  上海
2  王五  31  深圳

我们还可以使用DataFrame的iloc[]方法来修改满足特定位置条件的数据。例如,我们将第1行和第3行的数据修改为新的数据。

df.iloc[[0, 2], :] = [['赵六', 40, '广州'], ['孙七', 45, '杭州']]
print(df)

输出结果:

   姓名  年龄  城市
0  赵六  40  广州
1  李四  31  上海
2  孙七  45  杭州

此外,我们还可以使用DataFrame的query()方法来根据字符串表达式修改数据。例如,我们将年龄大于30且城市为北京的人的年龄修改为32。

df.query('年龄 > 30 and 城市 == "北京"').loc[:, '年龄'] = 32
print(df)

输出结果:

   姓名  年龄  城市
0  赵六  40  广州
1  李四  31  上海
2  孙七  45  杭州
相关文章
|
9月前
|
开发框架 .NET 中间件
.net8 使用 license 证书授权案例解析
本文介绍了如何使用 `.NET CLI` 创建并改造一个 `ASP.NET Core Web API` 项目,以实现基于许可证的授权机制。具体步骤包括创建项目、添加必要的 NuGet 包(如 `Standard.Licensing` 和 `Swashbuckle.AspNetCore`),以及修改 `Program.cs` 文件以集成自定义的许可证验证中间件。项目结构中新增了 `LicenseController` 接口用于处理授权相关操作,并通过测试流程验证了默认天气接口在未授权和授权状态下的响应情况。整个过程确保了应用程序能够在启动时正确验证许可证,保障系统的安全性与可控性。
473 8
.net8 使用 license 证书授权案例解析
|
12月前
|
NoSQL Java Linux
《docker高级篇(大厂进阶):2.DockerFile解析》包括:是什么、DockerFile构建过程解析、DockerFile常用保留字指令、案例、小总结
《docker高级篇(大厂进阶):2.DockerFile解析》包括:是什么、DockerFile构建过程解析、DockerFile常用保留字指令、案例、小总结
526 76
|
9月前
|
机器学习/深度学习 人工智能 搜索推荐
技术革新下的培训新趋势:案例解析
从最初的“试试看”,到如今的“非做不可”,企业培训已经成为央国企和上市公司不可或缺的战略环节。无论是AI与大模型的赋能,DeepSeek,还是具身智能、智算技术和数据科学的实战应用,这些课程都在为企业打开新的可能性。
|
9月前
|
机器学习/深度学习 人工智能 文字识别
从“泛读”到“精读”:合合信息文档解析如何让大模型更懂复杂文档?
随着deepseek等大模型逐渐步入视野,理论上文档解析工作应能大幅简化。 然而,实际情况却不尽如人意。当前的多模态大模型虽然具备强大的视觉与语言交互能力,但在解析非结构化文档时,仍面临复杂版式、多元素混排以及严密逻辑推理等挑战。
361 0
|
11月前
|
Serverless 对象存储 人工智能
智能文件解析:体验阿里云多模态信息提取解决方案
在当今数据驱动的时代,信息的获取和处理效率直接影响着企业决策的速度和质量。然而,面对日益多样化的文件格式(文本、图像、音频、视频),传统的处理方法显然已经无法满足需求。
446 4
智能文件解析:体验阿里云多模态信息提取解决方案
|
11月前
|
文字识别 开发者 数据处理
多模态数据信息提取解决方案评测报告!
阿里云推出的《多模态数据信息提取》解决方案,利用AI技术从文本、图像、音频和视频中提取关键信息,支持多种应用场景,大幅提升数据处理效率。评测涵盖部署体验、文档清晰度、模板简化、示例验证及需求适配性等方面。方案表现出色,部署简单直观,功能强大,适合多种业务场景。建议增加交互提示、多语言支持及优化OCR和音频转写功能...
403 3
多模态数据信息提取解决方案评测报告!
|
12月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
11月前
|
数据采集 XML API
深入解析BeautifulSoup:从sohu.com视频页面提取关键信息的实战技巧
深入解析BeautifulSoup:从sohu.com视频页面提取关键信息的实战技巧
|
9月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
919 29
|
9月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
391 4

热门文章

最新文章

推荐镜像

更多
  • DNS