C语言第二十九弹---浮点数在内存中的存储

简介: C语言第二十九弹---浮点数在内存中的存储



1、浮点数在内存中的存储

常见的浮点数:3.14159、1E10(1^10)等,浮点数家族包括: float double long double 类型。

浮点数表示的范围: float.h 中定义

1.1、练习

#include <stdio.h>
int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}

输出什么?

按照我们整数存储的想法,打印的结果分别是9、9.000000、9、9.000000

但是为什么会出现上面的结果呢?下面就从浮点数的存储来详细讲解此代码。

1.2、浮点数怎么转化为二进制

首先我们来个简单的例子:

把十进制小数5.25化为二进制小数,我们应该怎么操作?

我们分为以下几步:

1. 以小数点为界进行拆分;
2. 整数部分转为二进制相信大家肯定没问题
3. 小数部分采用的是"乘2取整法",当乘2之后小数部分得到0就停止计算

十进制小数5.25:

1、以小数点为界进行拆分,整数部分为5,小数部分为0.25

2、整数转化为二进制为101

3、小数部分采取“乘2取整法”,0.25*2=0.5,整数部分为0,小数部分为0.5,继续乘2,0.5*2=1.0,整数部分为1,小数部分为0,小数部分为0则停止计算。取的数字为整数部分数字,因此转化为二进制小数为0.01。

4. 合并结果:整数部分 + 小数部分,最终得到二进制结果为101.01.

5. 二进制小数转化为十进制验算

101.01=1*2^2+0*2^1+1*2^0+0*2^-1+1*2^-2=5.25

以上就是浮点数化为二进制的步骤了,下面我们来看看更复杂一点的例子:
把十进制3.14化为二进制:

1、以小数点为界进行拆分,整数部分为3,小数部分为0.14

2、整数转化为二进制为11

3、小数部分采取“乘2取整法”,0.14*2=0.28,整数部分为0,小数部分为0.28,继续乘2, 0.28*2=0.56,整数部分为0,小数部分为0.56,继续乘2, 0.56*2=1.12,整数部分为1,小数部分为0.12,继续乘2, 0.12*2=0.24,整数部分为0,小数部分为0.24,.............小数部分为0则停止计算。取的数字为整数部分数字。

1.3、浮点数的存储

上面的代码中, num *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,⼀定要搞懂浮点数在计算机内部的表示方法。

根据国际标准IEEE(电气和电子⼯程协会) 754,任意⼀个⼆进制浮点数V可以表示成下面的形式:

V  =  (−1) ^S * M ∗ 2^E

(−1)^S 表示符号位,当S=0,V为正数;当S=1,V为负数

M 表示有效数字,M是大于等于1,小于2的

2^E 表示指数位

举例来说:

⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位(第一位)存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M。

对于64位的浮点数,最高的1位(第一位)存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。

1.3.1、浮点数存的过程

IEEE 754 对有效数字M和指数E,还有⼀些特别规定。

前面说过, 1 M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。

IEEE 754 规定,在计算机内部保存M时默认这个数的第⼀位总是1因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为⼀个无符号整数(unsigned int)。

这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定, 存入内存时E的真实值必须再加上⼀个中间数 ,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

1.3.2、浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即 指数E的计算值减去127(或1023) ,得到真实值,再将 有效数字M前加上第⼀位的1。

比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其⼆进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

0 00000000 00100000000000000000000

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

0 11111111 00010000000000000000000

好了,关于浮点数的表示规则,就说到这里。

1.3、题目解析

下面,让我们回到⼀开始的练习

先看第1环节,为什么 9 还原成浮点数,就成了 0.000000

9以整型的形式存储在内存中,得到如下⼆进制序列:

0000 0000 0000 0000 0000 0000 0000 1001

首先,将 9 的⼆进制序列按照浮点数的形式拆分,得到第⼀位符号位s=0,后面8位的指数

E=00000000 , 最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是⼀个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看第2环节,浮点数9.0,为什么整数打印是 1091567616?

首先,浮点数9.0 等于⼆进制的1001.0,即换算成科学计数法是:1.001×2^3

所以: 9.0  =  (−1) ^0 ∗ (1.001)  ∗  2^3

那么,第⼀位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130, 即10000010

所以,写成⼆进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的⼆进制数,被当做整数来解析的时候,就是整数在内存中的补码,此数为正数,原反补码相同,原码正是 1091567616

通过浮点数进行存储,按照浮点数打印,因此*pFloat=9.000000。

总结

本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

相关文章
|
5天前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
27 6
|
12天前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
60 12
|
4天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
18 1
|
9天前
|
存储 C语言 计算机视觉
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。
|
1月前
|
C语言
【c语言】动态内存管理
本文介绍了C语言中的动态内存管理,包括其必要性及相关的四个函数:`malloc`、``calloc``、`realloc`和`free`。`malloc`用于申请内存,`calloc`申请并初始化内存,`realloc`调整内存大小,`free`释放内存。文章还列举了常见的动态内存管理错误,如空指针解引用、越界访问、错误释放等,并提供了示例代码帮助理解。
45 3
|
2月前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
64 1
|
2月前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
2月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
2月前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
57 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
|
2月前
|
存储 C语言
【c语言】字符串函数和内存函数
本文介绍了C语言中常用的字符串函数和内存函数,包括`strlen`、`strcpy`、`strcat`、`strcmp`、`strstr`、`strncpy`、`strncat`、`strncmp`、`strtok`、`memcpy`、`memmove`和`memset`等函数的使用方法及模拟实现。文章详细讲解了每个函数的功能、参数、返回值,并提供了具体的代码示例,帮助读者更好地理解和掌握这些函数的应用。
27 0