python数据分析和可视化【1】

简介: python数据分析和可视化【1】

前言

这学期开了门课是python数据分析和可视化,今天第一次实验课主要是复习了一下python基础和常用的一些操作

【1】读取txt,csv文件和文件的写入

#读取txt,csv文件
file=open("C:\\Users\86178\Downloads\泰戈尔的诗.txt",mode='r') #以只读方式打开文件
content=file.read() #一次性读取整个文件内容
print(content)
file.close()
#读取csv文件
import csv
with open("C:\\Users\86178\Downloads\student.csv","r") as f:
    reader=csv.reader(f)
    rows=[row for row in reader]
for item in rows:
    print(item)
#csv文件的写入
content=[
    ["5","hanmeimei","23","81"],
    ["1","mali","18","99"],
    ["2","jcak","21","89"],
    ["3","zhanghua","23","88"], ]
f=open("C:\\Users\86178\Downloads\person.csv", "w",encoding="utf-8", newline="")  #不加newline="",就会出现空行
content_out=csv.writer(f) #1.创建writer对象
for con in content:  #遍历列表,将每一行的数据写入csv
    content_out.writerow(con)
f.close()

写入后的文件:

【2】白葡萄酒的数据分析

1.查看白葡萄酒中共分为几种品质等级

① 查看当前葡萄酒文件的格式,选择合适的方法进行数据载入

② 明确描述“品质等级”的具体位置,即quality属性

③ 遍历数据,将每行数据的quality值放于列表

④ 对此列表进行去重

2.按白葡萄酒等级将数据集划分为7个子集,并统计每种品质等级的数量

① 考虑保存数据的数据结构,要求既有等级又有对应的等级的数量,可用字典

② 遍历文件,相同等级的数据可放于一个列表,每一个等级创建一个列表

③ 计算列表的长度

白葡萄酒的数据集:

代码:

import  csv
f=open("C:\\Users\86178\Desktop\winequality-red.csv","r",encoding="utf-8")
reader=csv.reader(f)
content=[]
for i in reader:
    content.append(i)  #把每一行数据放到列表中,列表中每一个元素是每一行数据
f.close()
quality_list=[]  #存放每列quality的值
for row in content[1:]:
    quality_list.append(int(row[-1]))  #把每列的quality的值放到列表中
quality_count=set(quality_list)#去重
print("白葡萄酒共有%d种等级,分别是:%r"%(len(quality_count),quality_count))
content_dict={}
for row in content[1:]:
    quality = int(row[-1])
    if quality not in content_dict.keys():
        content_dict[quality] = [row]   # 创建values:[ [] ]
    else:
        content_dict[quality].append(row)  #向字典中添加values值,例如[ [],[],[] ]
for key in content_dict:
    print("质量",key,"级的数量:",len(content_dict[key]))

运行结果:

目录
相关文章
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
201 3
|
3月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。
|
4月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
3月前
|
搜索推荐 算法 大数据
基于python大数据的旅游景点可视化与推荐系统
本系统基于大数据与网络技术,构建个性化旅游推荐平台。通过收集用户偏好及行为数据,结合机器学习算法,提供精准的旅游目的地、住宿及交通推荐,旨在优化旅游信息传递,提升用户决策效率与旅行体验。
|
4月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案

推荐镜像

更多