预测一下,GPT-5 会在什么时候发布,又会有哪些更新?

简介: GPT-5预告11月发布,或与ChatGPT两周年同庆。谷歌Gemini与GPT-4 turbo竞争激烈。GPT-5或分阶段推出,训练加安全测试耗时9个月。GPT-4拥有1.8万亿参数,120层结构,训练成本6300万,专为多模态设计,加强推理性能。GPT-5预期参数增10倍,强化多模态及推理能力,支持图像、音频和视频处理。[个人主页的个人介绍内容](https://developer.aliyun.com/profile/oesouji3mdrog/highScore_1?spm=a2c6h.13262185.profile.6.56644d0depOAIS)
  • 发布预期:GPT-5预计将于11月发布,可能与ChatGPT发布两周年同期。
  • 竞争态势:谷歌的Gemini与GPT-4 turbo已展开竞争。
  • 逐步发布:GPT-5可能通过模型训练过程中的中间检查点逐步发布。
  • 训练与安全测试:实际训练可能需3个月,加上6个月的安全测试。
  • GPT-4技术规格
    • 模型规模:约1.8万亿参数,120层。
    • 混合专家系统(MoE):包含16个专家,每个专家111B MLP参数。
    • 数据集:基于13T tokens的文本和代码数据训练。
    • 数据集混合:CommonCrawl和RefinedWeb,推测包括社交媒体和教科书数据。
    • 训练成本:约6300万美元。
    • 推理成本:比175B参数的Davinci模型高3倍。
    • 推理架构:在128个GPU集群上运行,使用8路张量并行和16路流水线并行。
    • 视觉多模态:加入视觉编码器,支持图像和视频编码。
  • GPT-5预期特性
    • 参数规模:可能是GPT-4的10倍。
    • 推理能力:增强推理步骤的列举和检查,改善代码生成和数学运算。
    • 数据使用:更多元的训练数据,包括文本、图像、音频和视频等。
    • 多模态和推理:预计将加强多模态能力和逻辑推理性能,提升LLM的代理性。

image.png
image.png
image.png

具体GPT5教程参考:个人主页的个人介绍内容

目录
相关文章
|
8天前
|
机器学习/深度学习
过程奖励模型PRM成版本答案!谷歌DeepMind全自动标注逐步骤奖励PAV,准确率提升8%
研究团队提出了一种新的过程奖励模型(PRM),通过衡量每一步骤的进展来改进大型语言模型(LLM)的推理能力。与仅在最后提供反馈的结果奖励模型(ORM)不同,PRM能在多步骤推理中逐步提供反馈,从而改善信用分配。研究引入了过程优势验证者(PAV),用于预测证明策略下的进展,显著提升了测试时间搜索和在线强化学习(RL)的效率与准确性。实验表明,PAV相比ORM提高了8%以上的准确性和5至6倍的样本效率。该方法在Gemma2模型上得到了验证,并展示了在解决复杂问题上的潜力。尽管成果显著,但仍需进一步研究以优化证明策略的设计和减少拟合误差。
129 97
|
30天前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
53 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
4月前
|
物联网
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
44 1
|
4月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
57 0
|
5月前
Meta浙大校友让评估模型自学成才,数据全合成无需人工标注,训练Llama 3 70B超过405B
【9月更文挑战第21天】近日,一篇名为《Self-Taught Evaluators》的论文引起了广泛关注。该论文由Meta与浙江大学校友合作完成,提出一种创新的模型评估方法,通过让评估模型自学习训练,无需依赖昂贵且易过时的人工标注数据。此方法利用合成数据,通过迭代生成对比模型输出并训练基于大型语言模型的评估器,从而实现自我迭代改进。研究结果显示,在不使用任何标注偏好数据的情况下,这种方法显著提升了评估模型的性能,甚至超越了一些现有模型。尽管如此,该方法在实际应用中仍需进一步验证。论文地址:https://arxiv.org/abs/2408.02666
92 4
|
5月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
455 8
|
4月前
|
并行计算 Ubuntu 物联网
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)
46 0
|
6月前
|
数据采集 人工智能 自然语言处理
Llama 3.1发布:4050亿参数模型,迄今为止最强的开源大模型之一
Meta宣布发布Llama 3.1 405B,这一目前公开的最大且最先进的语言模型,标志着开源语言模型新时代的到来。Llama 3.1 405B不仅在常识理解、数学、工具使用及多语言翻译等功能上媲美顶尖AI模型,其8B和70B版本亦支持多种语言,拥有长达128K的上下文理解能力。该模型在150多个多语言基准测试中表现出色,并经过广泛的人工评估。为克服大规模训练挑战,Meta采用标准解码器架构和迭代后训练策略,大幅提升了数据质量和模型性能。此外,Llama 3.1通过监督微调、拒绝采样和直接偏好优化等手段提高了模型对指令的响应性和安全性。
114 2
|
6月前
|
算法 搜索推荐
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
|
7月前
|
人工智能 自然语言处理 计算机视觉
推荐收藏!2024年新版GPT详细论文润色指南【更新至2024年4月30日】
推荐收藏!2024年新版GPT详细论文润色指南【更新至2024年4月30日】
382 0