Flink CDC产品常见问题之直接升级里面的Debezium版本失败如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:我在网上一些案例了解到 flink cdc 不支持源表结构变更同步到目标表,是这样的吗?

我在网上一些案例了解到 flink cdc 不支持源表结构变更同步到目标表,是这样的吗?我这边只是简单的同步mysql,源库一部分表同步到目标库mysql。



参考答案:

不支持。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599200?spm=a2c6h.12873639.article-detail.62.50e24378TRW91E



问题二:Flink CDC里有没有flink从mysql到clickhouse的相关文档学习呀?

Flink CDC里有没有flink从mysql到clickhouse,还有mysql到mysql相关计算的demo学习一下呢?



参考答案:

关于Flink CDC从MySQL到ClickHouse以及MySQL到MySQL的相关计算Demo,阿里云社区、Apache Flink官方文档或GitHub上的开源项目中可能有实例代码供参考学习。例如,在Flink官方文档中,通常会有不同数据源和接收器的连接器配置示例,而针对特定场景下的实战案例则可能需要通过搜索相关教程或博客文章获取。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599199?spm=a2c6h.12873639.article-detail.63.50e24378TRW91E



问题三:Flink CDC3.0增量读取source时候,sink可以根据并行度生效,以表单位分发 了吗?

Flink CDC3.0增量读取source时候,sink可以根据并行度生效,以表单位或者其他特性分发到其他taskmanager了吗?是自动根据库表了么,有没有issue或者其他介绍呀?



参考答案:

可以。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599198?spm=a2c6h.12873639.article-detail.64.50e24378TRW91E



问题四:Flink CDC可以直接升级里面的Debezium版本吗 ?

Flink CDC可以直接升级里面的Debezium版本吗 ?



参考答案:

升级是需要做适配的,尤其大版本升级,接口都不一定兼容。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599197?spm=a2c6h.12873639.article-detail.65.50e24378TRW91E



问题五:Flink CDC里在使用rocksdb作为状态后端,并且使用全量checkpoint,不会这样吗?

Flink CDC里在使用rocksdb作为状态后端,并且使用全量checkpoint,不会触发FULL_STATE_SCAN_SNAPSHOT清理策略?



参考答案:

全量Checkpoint意味着Flink会保存整个流处理任务的所有状态信息。

在Flink CDC场景下,这意味着不仅包括普通算子的状态,还包括了源连接器(例如从数据库读取变更日志的Debezium等)的内部状态,即已经消费过的数据位置信息。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599196?spm=a2c6h.12873639.article-detail.66.50e24378TRW91E

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
16天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
121 56
|
24天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
52 9
|
25天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
42 2
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
129 0
|
2月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
7月前
|
Oracle 关系型数据库 MySQL
flink cdc 插件问题之报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
7月前
|
Java 关系型数据库 MySQL
Flink CDC有见这个报错不?
【2月更文挑战第29天】Flink CDC有见这个报错不?
98 2
|
7月前
|
存储 关系型数据库 MySQL
Flink CDC产品常见问题之写hudi的时候报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

相关产品

  • 实时计算 Flink版