文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面

简介: 文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面

一、介绍

文本分类系统,使用Python作为主要开发语言,通过选取的中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),基于TensorFlow搭建CNN卷积神经网络算法模型,并进行多轮迭代训练最后得到一个识别精度较高的模型文件。然后使用Django框架开发网页端可视化界面平台。实现用户输入一段文本识别其所属的种类。

二、效果图片展示

img_06_04_11_27_31.jpg
img_06_04_11_27_31.jpg
img_06_04_11_27_55.jpg
img_06_04_11_27_07.jpg

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/dm2c902i8cckeayy

四、卷积神经网络介绍

CNN(卷积神经网络)原本主要用于图像处理领域,但它也被成功应用于文本分类识别。在这个领域,CNN能够有效识别文本中的局部特征,例如词组或短语,并通过学习这些特征来进行文本分类。
在文本处理中,通常首先将文本转换为向量形式,比如使用词嵌入(word embeddings)如Word2Vec或GloVe。这些向量化的文本数据之后会作为CNN的输入。CNN通过其卷积层可以捕捉到文本中的局部相关性,例如词与词之间的关联。经过多个卷积和池化(pooling)层后,网络能够从文本中提取有用的特征,并通过全连接层进行分类。
下面是一个使用TensorFlow和Python的简短示例代码,展示了如何构建一个用于文本分类的简单CNN模型:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense

# 假设词汇表大小为10000,嵌入维度为128,分类数量为5
vocab_size = 10000
embedding_dim = 128
num_classes = 5

model = Sequential()
model.add(Embedding(vocab_size, embedding_dim, input_length=500))
model.add(Conv1D(128, 5, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 打印模型概览
model.summary()

这个例子中,我们首先定义了一个顺序模型(Sequential)。模型的第一层是Embedding层,用于将词汇索引映射到其嵌入向量。接下来是一个卷积层(Conv1D),用于提取文本特征。然后是一个全局最大池化层(GlobalMaxPooling1D),用于减少参数数量并防止过拟合。最后是一个全连接层(Dense),用于分类。
这段代码提供了构建文本分类CNN模型的基础框架,可以根据具体的应用场景进行调整和优化。

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
310 55
|
26天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
203 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
161 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
79 2
|
3月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
155 1
|
3月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
194 1

热门文章

最新文章