Flink CDC HBase字段类型与Flink SQL类型之间的转换

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【1月更文挑战第4天】【1月更文挑战第19篇】Flink CDC HBase字段类型与Flink SQL类型之间的转换

Flink CDC HBase字段类型与Flink SQL类型之间的转换可以通过以下Java代码实现:

import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.LogicalType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;

public class FlinkCDCHBaseTypeConverter {
   

    public static Object convertHBaseFieldToFlinkSQLType(Result result, String columnName, DataType dataType) {
   
        Object value = result.getValue(Bytes.toBytes(columnName), dataType.getTypeID().toString());
        if (value == null) {
   
            return null;
        }

        switch (dataType.getTypeID()) {
   
            case BOOLEAN:
                return Boolean.parseBoolean(value.toString());
            case TINYINT:
                return Short.parseShort(value.toString());
            case SMALLINT:
                return Integer.parseInt(value.toString());
            case INTEGER:
                return Long.parseLong(value.toString());
            case BIGINT:
                return BigInteger.valueOf(Long.parseLong(value.toString()));
            case FLOAT:
                return Float.parseFloat(value.toString());
            case DOUBLE:
                return Double.parseDouble(value.toString());
            case DECIMAL:
                return new BigDecimal(value.toString());
            case CHAR:
                return value.toString();
            case VARCHAR:
                return value.toString();
            case DATE:
                return Date.valueOf(value.toString());
            case TIMESTAMP:
                return Timestamp.valueOf(value.toString());
            case TIME:
                return Time.valueOf(value.toString());
            case BINARY:
                return Bytes.toBytes(value.toString());
            case ARRAY:
                return convertArrayHBaseFieldToFlinkSQLType(result, columnName, (RowType) dataType);
            case MAP:
                return convertMapHBaseFieldToFlinkSQLType(result, columnName, (RowType) dataType);
            case STRUCT:
                return convertStructHBaseFieldToFlinkSQLType(result, columnName, (RowType) dataType);
            default:
                throw new IllegalArgumentException("Unsupported Flink SQL type: " + dataType);
        }
    }

    private static Object[] convertArrayHBaseFieldToFlinkSQLType(Result result, String columnName, RowType arrayType) {
   
        // TODO: Implement conversion for HBase Array field type to Flink SQL Array type
        throw new UnsupportedOperationException("Conversion for HBase Array field type to Flink SQL Array type not implemented");
    }

    private static Object[] convertMapHBaseFieldToFlinkSQLType(Result result, String columnName, RowType mapType) {
   
        // TODO: Implement conversion for HBase Map field type to Flink SQL Map type
        throw new UnsupportedOperationException("Conversion for HBase Map field type to Flink SQL Map type not implemented");
    }

    private static Object[] convertStructHBaseFieldToFlinkSQLType(Result result, String columnName, RowType structType) {
   
        // TODO: Implement conversion for HBase Struct field type to Flink SQL Struct type
        throw new UnsupportedOperationException("Conversion for HBase Struct field type to Flink SQL Struct type not implemented");
    }
}

这个代码示例提供了一个名为FlinkCDCHBaseTypeConverter的类,其中包含一个名为convertHBaseFieldToFlinkSQLType的静态方法。这个方法接受一个Result对象、一个列名和一个DataType对象作为参数,并根据HBase字段类型将其转换为相应的Flink SQL类型。请注意,这个示例仅实现了部分类型的转换,您需要根据实际需求实现其他类型的转换。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
1天前
|
SQL 大数据 数据处理
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。
55 26
|
4月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
225 15
|
7天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
131 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
1月前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
103 16
|
1月前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
132 14
|
2月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
175 9
|
3月前
|
SQL Java 数据库连接
mybatis使用四:dao接口参数与mapper 接口中SQL的对应和对应方式的总结,MyBatis的parameterType传入参数类型
这篇文章是关于MyBatis中DAO接口参数与Mapper接口中SQL的对应关系,以及如何使用parameterType传入参数类型的详细总结。
71 10
|
4月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
766 2
Flink CDC:新一代实时数据集成框架
|
3月前
|
SQL 存储 关系型数据库
SQL判断CHAR类型字段不为空的方法与技巧
在SQL查询中,判断一个CHAR类型字段是否不为空是一个常见的需求
|
3月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
71 0