CNN卷积神经网络手写数字集实现对抗样本与对抗攻击实战(附源码)

简介: CNN卷积神经网络手写数字集实现对抗样本与对抗攻击实战(附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

在讨论卷积神经网络时,给出了一个用卷积神经网络来完成手写体数学识别的示例,其TensorFlow2版本能达到0.986的识别率。用该卷积神经网络模型来示例对抗样本对神经网络模型的攻击。

用训练好的卷积神经网络模型对该对抗样本图片进行预测,得到错误结果为3。  

记原始样本为x,原始样本的对抗样本为x_adv,添加的扰动为r。它们之间的关系为:

一般来讲,r应尽可能小,体现在对图像的攻击上,就是修改后的对抗样本尽量不被人眼察觉。 被攻击模型的输入输出关系用映射F来表示:

y=F(x)

其中,y为模型对样本x的预测值。

非定向对抗攻击是找到一个尽量小的r,使得:

F(x_adv)=F(x+r)≠y

定向对抗攻击是指定输出的攻击。记指定的攻击目标为y_target,定向对抗攻击就是找到一个尽量小的r,使得:

F(x_adv)=y_target≠y

原图片预测结果正确

添加扰动后预测结果错误

 

部分代码如下

import matplotlib.pyplot as plt
import numpy as np
img = X_val[0]
label = y_val[0]
img = img.reshape(1, 28, 28, 1)
img_predict = model.predict([img], batch_size=None)
img1 = img.reshape(28, 28)
plt.imshow(img1, cmap = 'binary')
print('标签:', np.argmax(label), '模型预测:', np.argmax(img_predict))
epsilon = 0.09
adv_x = img + epsilon * perturbations.numpy()
img_predict = model.predict([adv_x], batch_size=None)
print(np.argmax(img_predict))
plt.imshow(adv_x.reshape(28, 28), cmap = 'binary')
import tensorflow as tf
loss_object = tf.keras.losses.CategoricalCrossentropy()
# 计算梯度
def compute_grad(input_image, input_label):
    with tf.GradientTape() as g:
        g.watch(tensor=input_image) # 将输入样本作为要计算梯度的变量
        prediction = model(input_image)
        loss = loss_object(input_label, prediction)
    gradient = g.gradient(loss, input_image) # 求损失函数的梯度
    return gradient

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
52 7
|
13天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
17 1
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
20天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
37 1
|
22天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
23天前
|
机器学习/深度学习 人工智能 数据处理
深入浅出卷积神经网络(CNN)
【10月更文挑战第40天】本文旨在通过浅显易懂的语言和直观的示例,带领初学者了解并掌握卷积神经网络(CNN)的基本概念、结构以及在图像处理中的应用。我们将从CNN的核心组成讲起,逐步深入到网络训练的过程,最后通过一个实际的代码示例来展示如何利用CNN进行图像识别任务。无论你是编程新手还是深度学习爱好者,这篇文章都将为你打开一扇通往人工智能世界的新窗。
|
23天前
|
机器学习/深度学习 人工智能 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
25 1