视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(下)

简介: 视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(下)

1.4. 特征提取


timm 提供了很多不同类型网络中间层的机制,其有助于作为特征提取以应用于下游任务.


1.4.1. 最终特征图

from PIL import Image 
import matplotlib.pyplot as plt 
import numpy as np 
import torch 
image = Image.open('test.jpg')
image = torch.as_tensor(np.array(image, dtype=np.float32)).transpose(2, 0)[None]
model = timm.create_model("resnet50d", pretrained=True)
print(model.default_cfg)
#如,只查看最终特征图,这里是池化层前的最后一个卷积层的输出
feature_output = model.forward_features(image)
def vis_feature_output(feature_output):
    plt.imshow(feature_output[0]).transpose(0, 2).sum(-1).detach().numpy())
    plt.show()
#
vis_feature_output(feature_output)


1.4.2. 多种特征输出

model = timm.create_model("resnet50d", pretrained=True, features_only=True)
print(model.feature_info.module_name())
#['act1', 'layer1', 'layer2', 'layer3', 'layer4']
print(model.feature_info.reduction())
#[2, 4, 8, 16, 32]
print(model.feature_info.channels())
#[64, 256, 512, 1024, 2048]
out = model(image)
print(len(out)) # 5 
for o in out:
    print(o.shape)
    plt.imshow(o[0].transpose(0, 2).sum(-1).detach().numpy())
    plt.show()

1.4.3. 采用 Torch FX


TorchVision 新增了一个 FX 模块,其更便于获得输入在前向计算过程中的中间变换. 通过符号性的追踪前向方法,以生成一个图,途中的每个节点表示一个操作. 由于节点是易读的,其可以很方便的准确指定到具体节点.


https://pytorch.org/docs/stable/fx.html#module-torch.fx

https://pytorch.org/blog/FX-feature-extraction-torchvision/

#torchvision >= 0.11.0
from torchvision.models.feature_extraction import get_graph_node_names, create_feature_extractor
model = timm.create_model("resnet50d", pretrained=True, exportable=True)
nodes, _ = get_graph_node_names(model)
print(nodes)
features = {'layer1.0.act2': 'out'}
feature_extractor = create_feature_extractor(model, return_nodes=features)
print(feature_extractor)
out = feature_extractor(image)
plt.imshow(out['out'][0].transpose(0, 2).sum(-1).detach().numpy())
plt.show()

1.5. 模型导出不同格式


模型训练后,一般推荐将模型导出为优化的格式,以进行推断.


1.5.1. 导出 TorchScript


https://pytorch.org/docs/stable/jit.html

https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

model = timm.create_model("resnet50d", pretrained=True, scriptable=True)
model.eval() #重要
scripted_model = torch.jit.script(model)
print(scripted_model)
print(scripted_model(torch.rand(8, 3, 224, 224)).shape)


1.5.2. 导出 ONNX


Open Neural Network eXchange (ONNX)

https://pytorch.org/docs/master/onnx.html


model = timm.create_model("resnet50d", pretrained=True, exportable=True)
model.eval() #重要
x = torch.randn(2, 3, 224, 224, requires_grad=True)
torch_out = model(x)
#Export the model
torch.onnx.export(model,                   #模型
                 x,                        #输入
                 'resnet50d.onnx',         #模型导出路径
                  export_params=True,      #模型文件存储训练参数权重
                  opset_version=10,        #ONNX 版本
                  do_constant_folding=True,#是否执行不断折叠优化
                  input_names=['input'],   #输入名
                  output_names=['output'], #输出名
                  dynamic_axes={'input': {0: 'batch_size'},
                               'output': {0: 'batch_size'}}
                 )
#验证导出模型
import onnx
onnx_model = onnx.load('resnet50d.onnx')
onnx.checker.check_model(onnx_model)
traced_model = torch.jit.trace(model, torch.rand(8, 3, 224, 224))
type(traced_model)
print(traced_model(torch.rand(8, 3, 224, 224)).shape)

2. Augmentations


timm 的数据格式与 TorchVision 类似,PIL 图像作为输入.


from timm.data.transforms_factory import create_transform
print(create_transform(224, ))
'''
Compose(
    Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
    CenterCrop(size=(224, 224))
    ToTensor()
    Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
'''
print(create_transform(224, is_training=True))
'''
Compose(
    RandomResizedCropAndInterpolation(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bilinear)
    RandomHorizontalFlip(p=0.5)
    ColorJitter(brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=None)
    ToTensor()
    Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
'''


2.1. RandAugment


对于新任务场景,很难确定要用到哪些数据增强. 且,鉴于如此多的数据增强策略,其组合数量更是庞大.


一种好的起点是,采用在其他任务上被验证有效的数据增强pipeline. 如,RandAugment


RandAugment,是一种自动数据增强方法,其从增强方法集合中均匀采样,如, equalization, rotation, solarization, color jittering, posterizing, changing contrast, changing brightness, changing sharpness, shearing, and translations,并按序应用其中的一些.


RandAugment: Practical automated data augmentation with a reduced search space


RandAugment 参数:


N - 随机变换的数量( number of distortions uniformly sampled and applied per-image)

M - 变换的幅度(distortion magnitude)

timm 中 RandAugment 是通过配置字符串来指定的,以 - 分割符.


m - 随机增强的幅度

n - 每张图像进行的随机变换数,默认为 2.

mstd - 标准偏差的噪声幅度

mmax - 设置幅度的上界,默认 10

w - 加权索引的概率(index of a set of weights to influence choice of operation)

inc - 采用随幅度增加的数据增强,默认为 0

如,


rand-m9-n3-mstd0.5 - 幅度为9,每张图像 3 种数据增强,mstd 为 0.5

rand-mstd1-w0 - mstd 为 1.0,weights 为 0,默认幅度m为10,每张图像 2 种数据增强

print(create_transform(224, is_training=True, auto_augment='rand-m9-mstd0.5'))
'''
Compose(
    RandomResizedCropAndInterpolation(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bilinear)
    RandomHorizontalFlip(p=0.5)
    RandAugment(n=2, ops=
    AugmentOp(name=AutoContrast, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Equalize, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Invert, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Rotate, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Posterize, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Solarize, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=SolarizeAdd, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Color, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Contrast, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Brightness, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Sharpness, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=ShearX, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=ShearY, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=TranslateXRel, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=TranslateYRel, p=0.5, m=9, mstd=0.5))
    ToTensor()
    Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
'''


也可以通过 rand_augment_transform 函数来实现:

from timm.data.auto_augment import rand_augment_transform
tfm = rand_augment_transform(config_str='rand-m9-mstd0.5',
                             hparams={'img_mean': (124, 116, 104)})
print(tfm)
'''
RandAugment(n=2, ops=
    AugmentOp(name=AutoContrast, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Equalize, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Invert, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Rotate, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Posterize, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Solarize, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=SolarizeAdd, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Color, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Contrast, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Brightness, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=Sharpness, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=ShearX, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=ShearY, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=TranslateXRel, p=0.5, m=9, mstd=0.5)
    AugmentOp(name=TranslateYRel, p=0.5, m=9, mstd=0.5))
'''


2.2. CutMix 和 Mixup


CutMix

Mixup


timm 的 Mixup 类,支持的不同混合策略有:


batch - CutMix vs Mixup selection, lambda, and CutMix region sampling are performed per batch

pair - mixing, lambda, and region sampling are performed on sampled pairs within a batch

elem - mixing, lambda, and region sampling are performed per image within batch

half - the same as elementwise but one of each mixing pair is discarded so that each sample is seen once per epoch

Mixup 支持的数据增强有:


mixup_alpha (float): mixup alpha value, mixup is active if > 0., (default: 1)

cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0. (default: 0)

cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.

prob (float): the probability of applying mixup or cutmix per batch or element (default: 1)

switch_prob (float): the probability of switching to cutmix instead of mixup when both are active (default: 0.5)

mode (str): how to apply mixup/cutmix params (default: batch)

label_smoothing (float): the amount of label smoothing to apply to the mixed target tensor (default: 0.1)

num_classes (int): the number of classes for the target variable


from timm.data import ImageDataset
from torch.utils.data import DataLoader
def create_dataloader_iterator():
    dataset = ImageDataset('pets/images', transform=create_transform(224, ))
    dl = iter(DataLoader(dataset, batch_size=2))
    return dl
dataloader = create_dataloader_iterator()
inputs, classes = next(dataloader)
#
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[x.item() for x in classes])
#
from timm.data.mixup import Mixup
mixup_args = {'mixup_alpha': 1.,
             'cutmix_alpha': 1.,
             'prob': 1,
             'switch_prob': 0.5,
             'mode': 'batch', 
             'label_smoothing': 0.1,
             'num_classes': 2}
mixup_fn = Mixup(**mixup_args)
mixed_inputs, mixed_classes = mixup_fn(inputs.to(torch.device('cuda:0')),
                                      classes.to(torch.device('cuda:0')))
out = torchvision.utils.make_grid(mixed_inputs)
imshow(out, title=mixed_classes)

3. Datasets


timm 中 create_dataset 函数期望有两个输入参数:

name - 指定待加载数据集的名字

root - 数据集存放根目录

其支持不同的数据存储:

TorchVision

TensorFlow datasets

本地文件夹

#TorchVision
ds = create_dataset('torch/cifar10', 'cifar10', download=True, split='train')
print(ds, type(ds))
print(ds[0])
#TensorFlow
ds = create_dataset('tfds/beans', 'beans', download=True, split='train[:10%]', batch_size=2, is_training=True)
print(ds)
ds_iter = iter(ds)
image, label = next(ds_iter)
#本地文件夹
ds = create_dataset(name='', root='imagenette/imagenette2-320.tar', transfor=create_transform(224))
image, label = ds[0]
print(image.shape)

3.1. ImageDataset 类


除了 create_dataset,timm 还提供了两个 ImageDatasetIterableImageDataset 以适应更多的场景.

from timm.data import ImageDataset
imagenette_ds = ImageDataset('imagenette/imagenette2-320/train')
print(len(imagenette_ds))
print(imagenette_ds.parser)
print(imagenette_ds.parser.class_to_idx)
from timm.data.parser.parser_image_in_tar import ParserImageTar
data_path = 'imagenette'
ds = ImageDataset(data_path, parser=ParserImageInTar(data_path))


3.1.1. 定制 Parser


参考 ParserImageFolder:

""" A dataset parser that reads images from folders
Folders are scannerd recursively to find image files. Labels are based
on the folder hierarchy, just leaf folders by default.
Hacked together by / Copyright 2020 Ross Wightman
"""
import os
from timm.utils.misc import natural_key
from .parser import Parser
from .class_map import load_class_map
from .constants import IMG_EXTENSIONS
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
    labels = []
    filenames = []
    for root, subdirs, files in os.walk(folder, topdown=False, followlinks=True):
        rel_path = os.path.relpath(root, folder) if (root != folder) else ''
        label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
        for f in files:
            base, ext = os.path.splitext(f)
            if ext.lower() in types:
                filenames.append(os.path.join(root, f))
                labels.append(label)
    if class_to_idx is None:
        # building class index
        unique_labels = set(labels)
        sorted_labels = list(sorted(unique_labels, key=natural_key))
        class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
    images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx]
    if sort:
        images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
    return images_and_targets, class_to_idx
class ParserImageFolder(Parser):
    def __init__(
            self,
            root,
            class_map=''):
        super().__init__()
        self.root = root
        class_to_idx = None
        if class_map:
            class_to_idx = load_class_map(class_map, root)
        self.samples, self.class_to_idx = find_images_and_targets(root, class_to_idx=class_to_idx)
        if len(self.samples) == 0:
            raise RuntimeError(
                f'Found 0 images in subfolders of {root}. Supported image extensions are {", ".join(IMG_EXTENSIONS)}')
    def __getitem__(self, index):
        path, target = self.samples[index]
        return open(path, 'rb'), target
    def __len__(self):
        return len(self.samples)
    def _filename(self, index, basename=False, absolute=False):
        filename = self.samples[index][0]
        if basename:
            filename = os.path.basename(filename)
        elif not absolute:
            filename = os.path.relpath(filename, self.root)
        return filename

如:


from pathlib import Path
from timm.data.parsers.parser import Parser
class ParserImageName(Parser):
    def __init__(self, root, class_to_idx=None):
        super().__init__()
        self.root = Path(root)
        self.samples = list(self.root.glob("*.jpg"))
        if class_to_idx:
            self.class_to_idx = class_to_idx
        else:
            classes = sorted(
                set([self.__extract_label_from_path(p) for p in self.samples]),
                key=lambda s: s.lower(),
            )
            self.class_to_idx = {c: idx for idx, c in enumerate(classes)}
    def __extract_label_from_path(self, path):
        return "_".join(path.parts[-1].split("_")[0:-1])
    def __getitem__(self, index):
        path = self.samples[index]
        target = self.class_to_idx[self.__extract_label_from_path(path)]
        return open(path, "rb"), target
    def __len__(self):
        return len(self.samples)
    def _filename(self, index, basename=False, absolute=False):
        filename = self.samples[index][0]
        if basename:
            filename = filename.parts[-1]
        elif not absolute:
            filename = filename.absolute()
        return filename
#
data_path = 'test'
ds = ImageDataset(data_path, parser=ParserImageName(data_path))
print(ds[0])
print(ds.parser.class_to_idx)

4. Optimizers


timm 支持的优化器有:


import inspect
import timm.optim
optims_list = [cls_name for cls_name, cls_obj in inspect.getmembers(timm.optim) if inspect.isclass(cls_obj) if cls_name != 'Lookhead']
print(optims_list)


timm 中 create_optimizer_v2 函数.

import torch
model = torch.nn.Sequential(torch.nn.Linear(2, 1), 
                           torch.nn.Flatten(0, 1))
optimizer = timm.optim.create_optimizer_v2(model, opt='sgd', lr=0.01, momentum=0.8)
print(optimizer, type(optimizer))
'''
SGD (
Parameter Group 0
    dampening: 0
    lr: 0.01
    momentum: 0.8
    nesterov: True
    weight_decay: 0.0
) 
<class 'torch.optim.sgd.SGD'>
'''
optimizer = timm.optim.create_optimizer_v2(model, opt='lamb', lr=0.01, weight_decay=0.01)
print(optimizer, type(optimizer))
'''
Lamb (
Parameter Group 0
    always_adapt: False
    betas: (0.9, 0.999)
    bias_correction: True
    eps: 1e-06
    grad_averaging: True
    lr: 0.01
    max_grad_norm: 1.0
    trust_clip: False
    weight_decay: 0.0
Parameter Group 1
    always_adapt: False
    betas: (0.9, 0.999)
    bias_correction: True
    eps: 1e-06
    grad_averaging: True
    lr: 0.01
    max_grad_norm: 1.0
    trust_clip: False
    weight_decay: 0.01
) 
<class 'timm.optim.lamb.Lamb'>
'''

手工创建优化器,如:


optimizer = timm.optim.RMSpropTF(model.parameters(), lr=0.01)


4.1. 使用示例

# replace
# optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# with
optimizer = timm.optim.AdamP(model.parameters(), lr=0.01)
for epoch in num_epochs:
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
#
optimizer = timm.optim.Adahessian(model.parameters(), lr=0.01)
is_second_order = (
    hasattr(optimizer, "is_second_order") and optimizer.is_second_order
)  # True
for epoch in num_epochs:
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)
        loss.backward(create_graph=second_order)
        optimizer.step()
        optimizer.zero_grad()

4.2. Lookahead


Lookahead Optimizer: k steps forward, 1 step back

optimizer = timm.optim.create_optimizer_v2(model.parameters(), opt='lookahead_adam', lr=0.01)
#或
timm.optim.Lookahead(optimizer, alpha=0.5, k=6)
optimizer.sync_lookahead() 

示例如,

optimizer = timm.optim.AdamP(model.parameters(), lr=0.01)
optimizer = timm.optim.Lookahead(optimizer)
for epoch in num_epochs:
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    optimizer.sync_lookahead()

5. Schedulers


timm 支持的 Schedulers 有:


StepLRScheduler: 每 n 次迭代衰减一次学习率,类似于 torch.optim.lr_scheduler.StepLR

MultiStepLRScheduler: 设置特定迭代次数,衰减学习率,类似于 torch.optim.lr_scheduler.MultiStepLR

PlateauLRScheduler: reduces the learning rate by a specified factor each time a specified metric plateaus; 类似于 torch.optim.lr_scheduler.ReduceLROnPlateau

CosineLRScheduler: cosine decay schedule with restarts, 类似于 torch.optim.lr_scheduler.CosineAnnealingWarmRestarts

TanhLRScheduler: hyberbolic-tangent decay schedule with restarts

PolyLRScheduler: polynomial decay schedule


5.1. 使用示例


与PyTorch shceduler 不同的是,timm scheduler 每个 epoch 更新两次:

  • .step_update - 每次 optimizer 更新后调用.
  • .step - 每个 epoch 结束后调用


training_epochs = 300
cooldown_epochs = 10
num_epochs = training_epochs + cooldown_epochs
optimizer = timm.optim.AdamP(my_model.parameters(), lr=0.01)
scheduler = timm.scheduler.CosineLRScheduler(optimizer, t_initial=training_epochs)
for epoch in range(num_epochs):
    num_steps_per_epoch = len(train_dataloader)
    num_updates = epoch * num_steps_per_epoch
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)
        loss.backward()
        optimizer.step()
        scheduler.step_update(num_updates=num_updates)
        optimizer.zero_grad()
    scheduler.step(epoch + 1)


5.2. CosineLRScheduler


为了深入阐述 timm 所提供的参数选项,这里以 timm 默认训练脚本中所采用的 sheduler - CosineLRScheduler 为例.


timm 的 cosine scheduler 与 PyTorch 中的实现是不同的.


5.2.1. PyTorch CosineAnnealingWarmRestarts


CosineAnnealingWarmRestarts 需要设定如下参数:


T_0 (int): Number of iterations for the first restart.

T_mult (int): A factor that increases T_{i} after a restart. (Default: 1)

eta_min (float): Minimum learning rate. (Default: 0.)

last_epoch (int) — The index of last epoch. (Default: -1)

#args
num_epochs=300
num_epoch_repeat=num_epochs//2
num_steps_per_epoch=10
def create_model_and_optimizer():
    model = torch.nn.Linear(2, 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
    return model, optimizer
#create learning rate scheduler
model, optimizer = create_model_and_optimizer()
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
            optimizer,
            T_0=num_epoch_repeat*num_steps_per_epoch,
            T_mult=1,
            eta_min=1e-6,
            last_epoch=-1)
#vis
import matplotlib.pyplot as plt 
lrs = []
for epoch in range(num_epochs):
    for i in range(num_steps_per_epoch):
        scheduler.step()
    lrs.append(optimizer.param_groups[0]['lr'])
plt.plot(lrs)
plt.show()


7961af3d44ef0797a0243fa4ef5c002d.png

可以看出,lr 在 150 epoch 前保持衰减,而在第 150 epoch 时重启为初始值,并开始再次衰减.


5.2.2. timm CosineLRScheduler


timm CosineLRScheduler 需要设定如下参数:


t_initial (int): Number of iterations for the first restart, this is equivalent to T_0 in torch’s implementation

lr_min (float): Minimum learning rate, this is equivalent to eta_min in torch’s implementation (Default: 0.)

cycle_mul (float): A factor that increases T_{i} after a restart, this is equivalent to T_mult in torch’s implementation (Default: 1)

cycle_limit (int): Limit the number of restarts in a cycle (Default: 1)

t_in_epochs (bool): Whether the number iterations is given in terms of epochs rather than the number of batch updates (Default: True)

#args
num_epochs=300
num_epoch_repeat=num_epochs//2
num_steps_per_epoch=10
def create_model_and_optimizer():
    model = torch.nn.Linear(2, 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
    return model, optimizer
#create learning rate scheduler
model, optimizer = create_model_and_optimizer()
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat*num_steps_per_epoch,
            lr_min=1e-6,
            cycle_limit=num_epoch_repeat+1,
            t_in_epochs=False)
#or
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-6,
            cycle_limit=num_epoch_repeat+1,
            t_in_epochs=True)
#vis
import matplotlib.pyplot as plt 
lrs = []
for epoch in range(num_epochs):
    num_updates = epoch * num_steps_per_epoch
    for i in range(num_steps_per_epoch):
        num_updates += 1
        scheduler.step_update(num_updates=num_updates)
    scheduler.step(epoch+1)
    lrs.append(optimizer.param_groups[0]['lr'])
plt.plot(lrs)
plt.show()

示例策略:

scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat*num_steps_per_epoch,
            cycle_mul=2.,
            cycle_limit=num_epoch_repeat+1,
            t_in_epochs=False)
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat*num_steps_per_epoch,
            lr_min=1e-5,
            cycle_limit=1)
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=50,
            lr_min=1e-5,
            cycle_decay=0.8,
            cycle_limit=num_epoch_repeat+1)
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat*num_steps_per_epoch,
            lr_min=1e-5,
            k_decay=0.5,
            cycle_limit=num_epoch_repeat+1)
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat*num_steps_per_epoch,
            lr_min=1e-5,
            k_decay=2,
            cycle_limit=num_epoch_repeat+1)


5.2.3. 添加 warm up


如,设置 20 个 warm up epochs,


#args
num_epochs=300
num_epoch_repeat=num_epochs//2
num_steps_per_epoch=10
def create_model_and_optimizer():
    model = torch.nn.Linear(2, 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
    return model, optimizer
#create learning rate scheduler
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-5,
            cycle_limit=num_epoch_repeat+1,
            warmup_lr_init=0.01,
            warmup_t=20)
#vis
import matplotlib.pyplot as plt 
lrs = []
for epoch in range(num_epochs):
    num_updates = epoch * num_steps_per_epoch
    for i in range(num_steps_per_epoch):
        num_updates += 1
        scheduler.step_update(num_updates=num_updates)
    scheduler.step(epoch+1)
    lrs.append(optimizer.param_groups[0]['lr'])
plt.plot(lrs)
plt.show()


5.2.4. 添加 noise

#args
num_epochs=300
num_epoch_repeat=num_epochs//2
num_steps_per_epoch=10
def create_model_and_optimizer():
    model = torch.nn.Linear(2, 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
    return model, optimizer
#create learning rate scheduler
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-5,
            cycle_limit=num_epoch_repeat+1,
            noise_range_t=(0, 150), #noise_range_t:噪声范围
            noise_pct=0.1) #noise_pct:噪声程度
#vis
import matplotlib.pyplot as plt 
lrs = []
for epoch in range(num_epochs):
    num_updates = epoch * num_steps_per_epoch
    for i in range(num_steps_per_epoch):
        num_updates += 1
        scheduler.step_update(num_updates=num_updates)
    scheduler.step(epoch+1)
    lrs.append(optimizer.param_groups[0]['lr'])
plt.plot(lrs)
plt.show()

5.3. timm 默认设置

def create_model_and_optimizer():
    model = torch.nn.Linear(2, 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.05)
    return model, optimizer
#create learning rate scheduler
model, optimizer = create_model_and_optimizer()
#args
training_epochs=300
cooldown_epochs=10
num_epochs=training_epochs + cooldown_epochs
num_steps_per_epoch=10
scheduler = timm.scheduler.CosineLRScheduler(
            optimizer,
            t_initial=training_epochs,
            lr_min=1e-6,
            t_in_epochs=True,
            warmup_t=3,
            warmup_lr_init=1e-4,
            cycle_limit=1) # no restart
#vis
import matplotlib.pyplot as plt 
lrs = []
for epoch in range(num_epochs):
    num_updates = epoch * num_steps_per_epoch
    for i in range(num_steps_per_epoch):
        num_updates += 1
        scheduler.step_update(num_updates=num_updates)
    scheduler.step(epoch+1)
    lrs.append(optimizer.param_groups[0]['lr'])
plt.plot(lrs)
plt.show()

5.4. 其他 Scheduler

#TanhLRScheduler
scheduler = timm.scheduler.TanhLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-6,
            cycle_limit=num_epoch_repeat+1)
#PolyLRScheduler
scheduler = timm.scheduler.PolyLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-6,
            cycle_limit=num_epoch_repeat+1)
scheduler = timm.scheduler.PolyLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-6,
            cycle_limit=num_epoch_repeat+1,
            k_decay=0.5)
scheduler = timm.scheduler.PolyLRScheduler(
            optimizer,
            t_initial=num_epoch_repeat,
            lr_min=1e-6,
            cycle_limit=num_epoch_repeat+1,
            k_decay=2)

6. EMA 模型指数移动平均


EMA,Exponential Moving Average Model


模型训练时,一种好的方式是,将模型权重值设置为整个训练过程中所有参数的移动平均,而不是仅仅只采用最后一次增量更新的.


实际上,这往往是通过保持 EMA 来实现的,其是训练的模型副本.


不过,相比于每次更新 step 更新全量的模型参数,一般将这些参数设置为当前参数值和更新参数值的线性组合,公式如下:


image.png


如,


image.png

timm 中 ModelEmaV2 示例,

model = create_model().to(gpu_device)
ema_model = timm.utils.ModelEmaV2(model, decay=0.9998)
for epoch in num_epochs:
    for batch in training_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        ema_model.update(model)
    for batch in validation_dataloader:
        inputs, targets = batch
        outputs = model(inputs)
        validation_loss = loss_function(outputs, targets)
        ema_model_outputs = ema_model.module(inputs)
        ema_model_validation_loss = loss_function(ema_model_outputs, targets)


参考


https://www.aiuai.cn/aifarm1967.html

https://www.cxymm.net/article/qq_39280836/120160547

相关文章
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
247 2
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
15天前
|
安全 Linux 网络安全
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息。本文分三部分介绍 nmap:基本原理、使用方法及技巧、实际应用及案例分析。通过学习 nmap,您可以更好地了解网络拓扑和安全状况,提升网络安全管理和渗透测试能力。
70 5
|
15天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
49 2
|
16天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
43 1
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
61 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
81 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
27天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型