极智AI | 量化实现分享三:详解ACIQ对称量化算法实现

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: 大家好,我是极智视界,本文剖析一下ACIQ 对称量化算法实现,以 Tengine 的实现为例。

大家好,我是极智视界,本文剖析一下ACIQ 对称量化算法实现,以 Tengine 的实现为例。

这是量化实现的第三篇,前面还有一、二,有兴趣的同学可以查阅

(1) 《【模型推理】量化实现分享一:详解 min-max 对称量化算法实现》;

(2)《【模型推理】量化实现分享二:详解 KL 对称量化算法实现》;

ACIQ 和前面的量化策略类似,也是会截取一个阈值 T,然后将 [-T, T] 映射到量化值域,不同的是寻找 T 的过程,本文不止讲原理,也结合 tengine 讲讲量化策略的实现。下面开始。


1、ACIQ 量化策略原理

ACIQ 量化策略在论文《Post training 4-bit quantization of convolutional networks for rapid-deployment》中被提出,先贴一下效果:

上图比对统一采用 8-bit 权值量化、4-bit 激活值量化,在量化效率上 ACIQ 比 KL 量化过程快 4000 倍(unbelievable~),在量化精度上,可以看到除了 resnet-101,其他测试的网络量化效果均好于 KL 量化,可以说是效率和效果一个也不落。

在文章的一开始,作者就写道 Unlike traditional approaches that focus on the quantization at the network level, in this work we propose to minimize the quantization effect at the tensor level. 可以看出 ACIQ 是从 Tensor 级别出发的量化策略,整个推导逻辑主要是:

(1) first, derive a generic expression for any given distribution for the expected MSE as a function of clipping value;

(2) then use this expression to develop a specifific expression for each distribution;

(3) finally, establish the optimal clipping values by solving the equations for which the derivative with respect to the clipping value are set to zero;

通常在量化的时候需要做裁剪,以应对原始数据的长尾问题,假设 α 为截断值,截断可以表示为:

ACIQ 需要一个较强先验假设:Tensor (feature map) 服从拉普拉斯分布或高斯分布,然后采用最优化思想求解量化过程截断值对应的最小量化损失,整个量化过程是将服从原始分布的值映射到 2^M量化离散值域,M 为量化比特数,意思是将上面的 [-α, α] 的值域等分给 2^M,如下图:

假设原始分布的概率密度函数为 f(x),截断值 α 以及量化函数 Q(x),则量化前后的 L2 Loss 可以这么计算:

以上算式很明显可以分为三个部分:

(1) [负无穷, -α];

(2) [-α, α];

(3) [α, 正无穷];

对于高斯分布N(0, σ^2) 或者 拉普拉斯分布 Laplace(0, b)) 这种 0 轴对称分布来说,(1) 和 (3) 是等价的,含义是 |x| 到 |α| 之间的均方误差 (mean-square-error)。在做 [-α, α] 等分映射到 2^M 后,每个量化值会取每段中间的值 q1、q2、q3 ... q2^M,第 (2) 项就是中间截断的累计误差。现在整个量化过程转化为求一个使 E[(X - Q(X))^2] 最小的截断值 α (深度学习到最后都是数学问题啊~~),然后再结合先验分布,做一些公式的等价变换~变换~之后,得到最终的整体量化损失优化目标函数:

数学上,要求目标函数的最小值 ==> 求偏导,令其为 0。

对于拉普拉斯分布来说,求偏导后的表达式为:

对于高斯分布来说,求偏导后的表达式为:

最后不管对于拉普拉斯分布还是高斯分布来说,M 是你想量化的比特位,还有像 β (拉普拉斯分布参数)、σ (高斯分布参数) 这些都是已知值,自然可以求出我们想要的截断值 α 了,对于对称量化来说有了截断值就 ok 了。


2、ACIQ 量化策略实现

下面来看 ACIQ 在 tengine 中的实现。

量化实现主要代码:

case ALGORITHM_ACIQ:{
    if (quant_tool.scale_file.empty()){
        quant_tool.scale_file = "table_aciq.scale";
        quant_tool.activation_quant_tool();
    }
    save_graph_i8_perchannel(quant_tool.model_file.c_str(), quant_tool.scale_file.c_str(), quant_tool.output_file, quant_tool.inplace, false);
    /* Evaluate quantitative losses */
    if (quant_tool.evaluate){
        fprintf(stderr, "[Quant Tools Info]: Step Evaluate, evaluate quantitative losses\n");
        quant_tool.assess_quant_loss(0);
    }
    break;
}

2.1 激活值量化

激活值量化入口:

quant_tool.activation_quant_tool();

首先就是求 min、max 值,这个过程和前面写过的量化策略是一样的逻辑,就不多说了,接着进 ACIQ 策略:

for (int i = 0; i < ir_graph->tensor_num; i++){
    struct tensor* t = ir_graph->tensor_list[i];
    if (t->tensor_type == TENSOR_TYPE_VAR || t->tensor_type == TENSOR_TYPE_INPUT){
        float absmax = 0.f;
        float act_scale = 1.f;
        int act_zero_point = 0;
        int emlement_num = t->elem_num;
        absmax = std::max(std::abs(max_activation[i]), std::abs(min_activation[i]));
        float threshold = compute_aciq_gaussian_clip(absmax, emlement_num, 8);
        act_scale = threshold / 127.f;
        /* the scale of softmax is always scale = 1 / 127.f */
        for (int j = 0; j < ir_graph->node_num; j++){
            struct node* noden = ir_graph->node_list[j];
            struct tensor* tensor_tmp = get_ir_graph_tensor(ir_graph, noden->output_tensors[0]);
            if (!(tensor_tmp->tensor_type == TENSOR_TYPE_INPUT || tensor_tmp->tensor_type == TENSOR_TYPE_VAR))
                continue;
            std::string tmp_op_name = get_op_name_from_type(noden->op.type);
            std::string cur_name = t->name;
            std::string tmp_name = tensor_tmp->name;
            if ((cur_name == tmp_name) && tmp_op_name == "Softmax"){
                act_scale = 1 / 127.f;
                break;}
        }
        fprintf(fp_aciq, "%s %f %d\n", ir_graph->tensor_list[i]->name, act_scale, act_zero_point);}
}

关键是这个函数,tengine 里默认先验服从高斯分布, int8 量化:

float threshold = compute_aciq_gaussian_clip(absmax, emlement_num, 8);

来看一下它的实现:

static float compute_aciq_gaussian_clip(float absmax, int N, int num_bits)
{
    const float alpha_gaussian[8] = {0, 1.71063519, 2.15159277, 2.55913646, 2.93620062, 3.28691474, 3.6151146, 3.92403714};   // 当8-bit量化时,α=3.92403714
    const double gaussian_const = (0.5 * 0.35) * (1 + sqrt(3.14159265358979323846 * log(4))); 
    double std = (absmax * 2 * gaussian_const) / sqrt(2 * log(N));  
    return (float)(alpha_gaussian[num_bits - 1] * std);
}

这样就得到了截断值,然后就可以求 scale 了:

act_scale = threshold / 127.f;

这样就完成了激活值的量化。

2.2 权值&偏置量化

权值&偏置的量化过程和前面介绍过的 MIN-MAX 和 KL 量化的逻辑一样,这里不再赘述。

最后实践一下,可以发现 ACIQ 的量化过程十分的快,比 KL 量化快 4000 倍不是瞎说的,主要是源于先验的高斯分布 alpha_gaussian、gaussian_const、std 这些值不需要进行搜索。


以上分享了 ACIQ 的量化原理和实现,希望我的分享能对你的学习有一点帮助。


logo_show.gif

相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
「AI工程师」算法研发与优化-工作指导
**工作指导书摘要:** 设计与优化算法,提升性能效率;负责模型训练及测试,确保准确稳定;跟踪业界最新技术并应用;提供内部技术支持,解决使用问题。要求扎实的数学和机器学习基础,熟悉深度学习框架,具备良好编程及数据分析能力,注重团队协作。遵循代码、文档和测试规范,持续学习创新,优化算法以支持业务发展。
70 0
「AI工程师」算法研发与优化-工作指导
|
1月前
|
机器学习/深度学习 人工智能 算法
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
本文全面介绍了人工智能(AI)的基础知识、操作教程、算法实现及其在实际项目中的应用。首先,从AI的概念出发,解释了AI如何使机器具备学习、思考、决策和交流的能力,并列举了日常生活中的常见应用场景,如手机助手、推荐系统、自动驾驶等。接着,详细介绍了AI在提高效率、增强用户体验、促进技术创新和解决复杂问题等方面的显著作用,同时展望了AI的未来发展趋势,包括自我学习能力的提升、人机协作的增强、伦理法规的完善以及行业垂直化应用的拓展等...
148 3
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
|
24天前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
99 1
|
29天前
|
存储 人工智能 算法
AI算法的道德与社会影响:探索技术双刃剑的边界
【8月更文挑战第22天】AI算法作为一把双刃剑,在推动社会进步的同时,也带来了诸多道德与社会挑战。面对这些挑战,我们需要以开放的心态、严谨的态度和创新的思维,不断探索技术发展与伦理规范之间的平衡之道,共同构建一个更加美好、更加公正的AI未来。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI技术实践:利用机器学习算法预测房价
人工智能(Artificial Intelligence, AI)已经深刻地影响了我们的生活,从智能助手到自动驾驶,AI的应用无处不在。然而,AI不仅仅是一个理论概念,它的实际应用和技术实现同样重要。本文将通过详细的技术实践,带领读者从理论走向实践,详细介绍AI项目的实现过程,包括数据准备、模型选择、训练和优化等环节。
182 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
117 9
|
2月前
|
机器学习/深度学习 人工智能 算法
深入了解AI算法及其实现过程
人工智能(AI)已经成为现代技术发展的前沿,广泛应用于多个领域,如图像识别、自然语言处理、智能推荐系统等。本文将深入探讨AI算法的基础知识,并通过一个具体的实现过程来展示如何将AI算法应用于实际问题。
103 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 没有思考过 Embedding,不足以谈 AI
**摘要:** 本文深入探讨了人工智能中的Embedding技术,解释了它是如何将高维数据映射到低维向量空间以简化处理和捕获内在关系的。文章介绍了词向量、图像嵌入和用户嵌入等常见类型的Embedding,并强调了其在自然语言处理、计算机视觉和推荐系统中的应用。此外,还讨论了Embedding的数学基础,如向量空间和线性代数,并提到了Word2Vec、GloVe和BERT等经典模型。最后,文章涵盖了如何选择合适的Embedding技术,以及在资源有限时的考虑因素。通过理解Embedding,读者能够更好地掌握AI的精髓。
35 0
算法金 | 没有思考过 Embedding,不足以谈 AI
|
3月前
|
机器学习/深度学习 人工智能 Dart
AI - 机器学习GBDT算法
梯度提升决策树(Gradient Boosting Decision Tree),是一种集成学习的算法,它通过构建多个决策树来逐步修正之前模型的错误,从而提升模型整体的预测性能。