AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解(3)

简介: AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解

2、按照菜单分类选择模型

点击左上角菜单,可以看到这里是按照 以下几项来分类的:

  • 最高评价HIGHEST RATED
  • 最多下载MOST DOWNLOADED
  • 点赞最多MOST LIKED
  • 讨论最多MOST DISCuSSED
  • 最新上传NEWEST。



3、按照时间排序来选模型


点击右上角,可以按照时间排序来选模型:最近一周、最近一月、所有时间的。




4、按照模型类型、Stable Diffusion版本选择模型



Stable Diffusion目前有SD 1.4、SD 1.5、SD 2.0、SD 2.0 768、SD 2.1、SD 2.1768、SD 2.1 Unclip 等版本。


注意:

  • 通常来说版本越高,效果越好。
  • 目前比较流行的还是1.5版本,1.5之前的版本没啥限制,可以自由出各种图片。
  • 2.0以上版本提供了一个 图像无损放大模型:Upscaler Diffusion ,可以将生成图像的分辨率提高 4 倍,适合出高清大图。2.0加入了一些限制,不能出一些不可描述的图片。

所以,具体使用哪个版本,还是要根据自己的需求来选择。


挑到喜欢的模型后,怎么安装模型呢?


三、模型的下载安装实操


接下来我们来说明一下安装实操步骤。


1、下载模型文件,在c站 搜搜到喜欢的模型,并下载


2、下载成功后,我们会获得模型文件



3、将模型文件使用模型种类检测工具 获取模型的种类


如图:


将模型文件拖入该工具后,会获得以下信息:

文件名
dunhuangV3.safetensors
文件大小
144.11 MB
模型种类
LoRA 模型
模型用法
放入 models/Lora 文件夹后,在 webui 中,“生成” 按钮的下方选择 🎴 按钮,找到 Lora 选项卡点击使用。
Info
{
ss_batch_size_per_device:"6"
ss_bucket_info:{}
ss_bucket_no_upscale:"True"
ss_cache_latents:"True"
ss_caption_dropout_every_n_epochs:"0"
ss_caption_dropout_rate:"0.0"
ss_caption_tag_dropout_rate:"0.0"
ss_clip_skip:"None"
ss_color_aug:"False"
ss_dataset_dirs:{}
ss_enable_bucket:"True"
ss_epoch:"10"
ss_face_crop_aug_range:"None"
ss_flip_aug:"False"
ss_full_fp16:"False"
ss_gradient_accumulation_steps:"1"
ss_gradient_checkpointing:"False"
ss_keep_tokens:"0"
ss_learning_rate:"0.0001"
ss_lowram:"False"
ss_lr_scheduler:"cosine_with_restarts"
ss_lr_warmup_steps:"0"
ss_max_bucket_reso:"1024"
ss_max_grad_norm:"1.0"
ss_max_token_length:"None"
ss_max_train_steps:"6750"
ss_min_bucket_reso:"256"
ss_min_snr_gamma:"None"
ss_mixed_precision:"fp16"
ss_network_alpha:"64.0"
ss_network_dim:"128"
ss_network_module:"networks.lora"
ss_new_sd_model_hash:"e4a30e4607faeb06b5d590b2ed8e092690c631da0b2becb6224d4bb5327104b7"
ss_noise_offset:"None"
ss_num_batches_per_epoch:"675"
ss_num_epochs:"10"
ss_num_reg_images:"0"
ss_num_train_images:"4050"
ss_optimizer:"bitsandbytes.optim.adamw.AdamW8bit"
ss_output_name:"dunhuang_20230625021029"
ss_prior_loss_weight:"1.0"
ss_random_crop:"False"
ss_reg_dataset_dirs:"{}"
ss_resolution:"(512, 768)"
ss_sd_model_hash:"1d5a534e"
ss_sd_model_name:"majicmix_realv6_fp16.safetensors"
ss_sd_scripts_commit_hash:"(unknown)"
ss_seed:"2361018997"
ss_session_id:"801586992"
ss_shuffle_caption:"False"
ss_tag_frequency:{}
ss_text_encoder_lr:"1e-05"
ss_total_batch_size:"6"
ss_training_comment:"None"
ss_training_finished_at:"1687645290.3126323"
ss_training_started_at:"1687630234.599286"
ss_unet_lr:"0.0001"
ss_v2:"False"
sshs_legacy_hash:"14dab82f"
sshs_model_hash:"f747a8b2ab9a85d407f26183afb59d53fc023c2fbde928fe8512721fda5a11aa"
}


根据工具输出信息可知, dunhuangV3.safetensors 模型的模型种类是LoRA 模型。


4 、将模型dunhuangV3.safetensors 放入 models/Lora 文件夹。

5、在 webui 中,“生成” 按钮的下方选择 🎴 按钮,找到 Lora 选项卡点击使用。

好,今天的内容就到此结束,我们来总结一下。

今天主要给大家分享了 Stable Diffusion的模型种类说明,以及常见模型的下载、安装、使用方法, 没理解到的朋友,请收藏起来多看几遍。

关注我,后续继续分享sd更多干货 , 敬请期待。

相关文章
|
21天前
|
编解码 物联网 API
"揭秘SD文生图的神秘面纱:从选择模型到生成图像,一键解锁你的创意图像世界,你敢来挑战吗?"
【10月更文挑战第14天】Stable Diffusion(SD)文生图功能让用户通过文字描述生成复杂图像。过程包括:选择合适的SD模型(如二次元、2.5D、写实等),编写精准的提示词(正向和反向提示词),设置参数(迭代步数、采样方法、分辨率等),并调用API生成图像。示例代码展示了如何使用Python实现这一过程。
54 4
|
22天前
|
人工智能
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
|
2月前
|
人工智能 计算机视觉 Python
AI计算机视觉笔记八:基于mediapipe的虚拟绘画
该项目利用MediaPipe手部关键点识别技术,实现了隔空绘画功能。用户可以通过手势控制绘画工具,选择颜色或橡皮擦。环境配置基于`mediapipe_env`,在PyCharm中运行。项目包括两个文件:`AiVirtualPainter.py`负责绘画逻辑,`HandTrackingModule.py`用于手部关键点检测。此项目展示了AI技术在互动应用中的潜力,适合初学者实践与学习。
66 10
|
2月前
|
人工智能 自然语言处理 计算机视觉
比Stable Diffusion便宜118倍!1890美元训出11.6亿参数高质量文生图模型
【9月更文挑战第6天】最近,一篇论文在AI领域引起广泛关注,展示了如何以极低成本训练高质量文本生成图像(T2I)模型。研究者通过随机遮蔽图像中75%的patch并采用延迟遮蔽策略,大幅降低计算成本,同时结合Mixture-of-Experts(MoE)层提升性能。最终,他们仅用1890美元就训练出了一个拥有11.6亿参数的模型,在COCO数据集上取得12.7的FID分数。这一成果比Stable Diffusion成本低118倍,为资源有限的研究人员提供了新途径。尽管如此,该方法在其他数据集上的表现及进一步降低成本的可行性仍需验证。
51 1
|
3月前
|
人工智能 自然语言处理 API
阿里云百炼上线FLUX文生图模型中文优化版,可免费调用!
阿里云百炼上线FLUX文生图模型中文优化版,可免费调用!
381 6
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
"揭秘AI绘画魔法:一键生成梦幻图像,稳定扩散模型带你开启视觉奇迹之旅!"
【8月更文挑战第21天】稳定扩散(Stable Diffusion)是基于深度学习的模型,能根据文本生成高质量图像,在AI领域备受瞩目,革新了创意产业。本文介绍稳定扩散模型原理及使用步骤:环境搭建需Python与PyTorch;获取并加载预训练模型;定义文本描述后编码成向量输入模型生成图像。此外,还可调整参数定制图像风格,或使用特定数据集进行微调。掌握这项技术将极大提升创意表现力。
53 0
|
3月前
|
机器学习/深度学习 人工智能 编解码
AI文生图模型
8月更文挑战第16天
|
3月前
|
人工智能 编解码 自然语言处理
AI文生图模型DALL·E 3
8月更文挑战第15天
|
3天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
70 48
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。

热门文章

最新文章

下一篇
无影云桌面