JMeter与Python的多重交响:从入门到高级应用(上)

简介: 在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。**”**Jython-----

在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。

Jython

Jython是Python语言的Java实现,它允许您在JMeter中使用Python脚本,不需要额外的JAR包。

一、下载并配置

  1. 官网下载地址:Downloads | Jython

image.png

  1. 网盘链接:downloads > Jython 提取码:ux02

  2. 将下载的jar包放到Jmeter的安装路径/lib,如: D:\application\apache-jmeter-5.1.1\lib

image.png

  1. 切记,重启 jmeter

二、使用技巧

新增一个JSR223,选择语言为“jython”;
图片

注意:由于这个包使用的python版本为 2.7,所以写代码的时候不能全搬python3的语法过来玩。

示例一:前后置脚本中写python代码。

# jsr223 前置代码中编写:
"""该脚本用于加密登录信息"""
import hashlib
import sys
import time
import json

def password_srt(pubkey,  password):
    time_str = str(time.time())
    sign_str = str(pubkey) + time_str + str(password)
    sign = hashlib.md5(sign_str.encode('utf-8')).hexdigest()
    res = {'sign': sign, 'pubkey': pubkey, 'password': password}
    res = json.dumps(res)
    return res

result = password_srt(1234,5678)
log.info(result)
vars.put("secrity",result) # 设置到变量,为后续取样器使用。

贴图:

image.png

示例二:后置脚本中写python代码

# jsr223 后置脚本代码
import json
result = prev.getResponseDataAsString(); # 固定写法,获取响应结果
log.info("------"+result)   # 这里使用print 会打印不到日志里面来显示。
json_data = json.loads(result)  # 转python识别的字典对象
token = json_data.get("token") # 获取token值
log.info(token)
vars.put("token",token)

贴图:

image.png

添加一个debug sample来检查结果:
image.png

最终执行结果:
image.png

一些小Tips!!:

  • 性能流泪: 使用 Python 脚本会引入性能问题,因为 Python 是一种解释型语言,相比于 JMeter 自带的 Java 脚本,Python 脚本的执行效率可能会稍低,勇哥踩过这个坑!!!

  • 维护想哭: 逻辑分散在 JMeter 的测试计划和 Python 脚本之间时,会导致维护困难;也不利于团队协作!

  • 依赖一坨翔: Python是2.7版本且难以支持第三方python库使用,要写复杂的代码也是很头疼的!

  • 调试难上天: JMeter 中调试 Python 脚本真是看花眼,因为你看的信息都是jmeter输出的,定位问题一言难尽!

总结

以上就是勇哥今天为各位小伙伴准备的内容,如果你想了解更多关于Python自动化测试的知识和技巧,欢迎关注我:公众号\博客\CSDN\B站:测试玩家勇哥;我会不定期地分享更多的精彩内容。感谢你的阅读和支持!


题外话,勇哥打算把新建的技术交流群,打造成一个活跃的高质量技术群。工作中遇到的技术问题,都可以在里面咨询大家,还有工作内推的机会。有兴趣的小伙伴,欢迎加我(记得备注是进群还是报名学习)👇👇👇**


勇哥,10年落魄测试老司机,技术栈偏python,目前在一家超大型房产公司担任自动化测试主管,日常工作比较繁杂,主要负责自动化测试,性能测试、软件质量管理及人员管理。工作之余专注于为粉丝进行简历修改、面试辅导、模拟面试、资料分享、一对一自动化测试教学辅导等副业发展。目前已服务十多位小伙伴,取得高薪offer。

关注公众号,测试干货及时送达

往期精选文章👇:
接口自动化测试项目2.0,让你像Postman一样编写测试用例,支持多环境切换、多业务依赖、数据库断言等
揭秘抓包利器:Python和Mitmproxy让您轻松实现接口请求抓取与分析!
构建高效的接口自动化测试框架思路
Pytest 快速入门
接口自动化之测试数据动态生成并替换
requests模块该如何封装?
接口自动化如何封装mysql操作
一文看懂python如何执行cmd命令
最通俗易懂python操作数据库
python-Threading多线程之线程锁
python正则一篇搞掂
性能测试之必备知识

性能分析思

Python + ChatGPT来实现一个智能对话的钉钉机器人
一文看懂python如何执行cmd命令
相关文章
|
2月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
372 7
|
3月前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
372 1
|
3月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
265 0
|
4月前
|
API 数据安全/隐私保护 开发者
Python自定义异常:从入门到实践的轻松指南
在Python开发中,自定义异常能提升错误处理的精准度与代码可维护性。本文通过银行系统、电商库存等实例,详解如何创建和使用自定义异常,涵盖异常基础、进阶技巧、最佳实践与真实场景应用,助你写出更专业、易调试的代码。
186 0
|
4月前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
281 102
|
4月前
|
IDE 开发工具 数据安全/隐私保护
Python循环嵌套:从入门到实战的完整指南
循环嵌套是Python中处理多维数据和复杂逻辑的重要工具。本文通过实例讲解嵌套循环的基本用法、常见组合、性能优化技巧及实战应用,帮助开发者掌握其核心思想,避免常见错误,并探索替代方案与进阶方向。
423 0
|
2月前
|
Cloud Native 算法 API
Python API接口实战指南:从入门到精通
🌟蒋星熠Jaxonic,技术宇宙的星际旅人。深耕API开发,以Python为舟,探索RESTful、GraphQL等接口奥秘。擅长requests、aiohttp实战,专注性能优化与架构设计,用代码连接万物,谱写极客诗篇。
Python API接口实战指南:从入门到精通
|
2月前
|
存储 Java 调度
Python定时任务实战:APScheduler从入门到精通
APScheduler是Python强大的定时任务框架,通过触发器、执行器、任务存储和调度器四大组件,灵活实现各类周期性任务。支持内存、数据库、Redis等持久化存储,适用于Web集成、数据抓取、邮件发送等场景,解决传统sleep循环的诸多缺陷,助力构建稳定可靠的自动化系统。(238字)
571 1
|
3月前
|
调度 数据库 Python
Python异步编程入门:asyncio让并发变得更简单
Python异步编程入门:asyncio让并发变得更简单
226 5

推荐镜像

更多