JMeter与Python的多重交响:从入门到高级应用(下)

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。。

在性能测试领域,Apache JMeter已经成为测试专业人士的首选工具,用于模拟用户行为、测量响应时间、评估系统性能。但在某些情境下,为了满足特定需求,我们需要更多的灵活性,比如引入Python来进行特定操作或处理复杂逻辑。。

一、OS Process Sampler

在OS Process Sampler中,可以直接执行系统命令,这也包括执行Python脚本以及其他乱七八糟的脚本或者文件,但是我们这里只介绍关于调用python脚本的知识。

梳理步骤:
  1. 先编写python脚本,可以接收参数也可以不接收参数,但是一定要使用 print 打印结果出来

  2. 如果是windows系统,编写一个.bat 文件,让jmeter直接执行文件,如果linux文件,则编写shell文件

  3. 启动jmeter,添加一个os process sample ,然后配置里面的信息

  4. 添加一个正则提取器,提取调用外部文件返回的结果就完成我们的所有操作了。

演练开始

下面开始步骤一的操作
如下:加密文件中的python代码:

import base64
import sys
from Crypto.Cipher import AES
import binascii

def add_to_16(text):
    while len(text) % 16 != 0:
        text += '\0'
    return text

def encrypt(data, password):
    if isinstance(password, str):
        password = password.encode('utf8')
    bs = AES.block_size
    pad = lambda s: s + (bs - len(s) % bs) * chr(bs - len(s) % bs)
    cipher = AES.new(password, AES.MODE_ECB)
    data = cipher.encrypt(pad(data).encode('utf8'))
    encrypt_data = binascii.b2a_hex(data)  # 输出hex
    # encrypt_data = base64.b64encode(data)         # 取消注释,输出Base64格式
    return encrypt_data.decode('utf8')

if __name__ == '__main__':
    data = sys.argv[1]  # 待加密数据
    # data = '1915'  # 待加密数据
    password = '5544223414143242332423423423423'  # 16,24,32位长的密码(密钥)
    password = add_to_16(password)
    encrypt_data = encrypt(data, password)
    # print('加密前数据:{}\n======================='.format(data))
    print(f"sign={encrypt_data}")

    # decrypt_data = decrypt(encrypt_data, password)
    # print('解密后的数据:{}'.format(decrypt_data))

上述代码的大概逻辑就是接收传进来的待加密字符串,然后进行AES加密,最后打印加密后的数据结果

接着我们开始步骤二的操作
用windows举例,.bat 文件内容如下:

c:
cd C:\Users\chenyongzhi11\Desktop\
python .\do_AES.py %1

上面文件内容就是在命令行执行python文件,由于前面的python文件接收参数,我们这里使用 %1 这个占位来接收jmeter传进去的参数,我们把文件命名为 :execute_python_script.bat

接着我们开始步骤三的操作

添加一个OS Process Sampler

我们看下这个界面该如何配置:

这会调用外部Python脚本,并传入参数input_param

最后一步操作

添加一个正则表达式提取器,编写正则,看看能不能提取到结果:

最后我们用debug sample檢測最终结果:

这样整个流程完成了,也就可以很方便的调用外部文件做接口自动化了。

二、其他方案

这里再简单介绍两种能够处理python代码的方案:

  1. 使用函数助手[jmeter-functions-execute-python-script-1.0.jar]
    链接:https://pan.baidu.com/s/1JrPW723es9rFbp18mNAvug?pwd=thjp 提取码:thjp
    这个就直接放入到:\lib\ext 下面就行,然后重启jmeter
    使用如图:
  1. 使用BeanShell Sampler组件
    这个需要一定的java代码能力,大伙可以自行看着玩,因烦不建议,前面的os process sample 舒服,也就是说,既然都要写beanshell了,直接java代码干就完事了,哈哈!。
    示例代码,不保证能用:

import java.io.BufferedReader;
import java.io.InputStreamReader;

//1. 命令里的路径改成自己脚本的路径  
String command = "/opt/homebrew/bin/python3 /Users/xxx/Code/python-mysql/gen_id.py";

Runtime rt = Runtime.getRuntime();
Process pr = rt.exec(command);

pr.waitFor();

BufferedReader b = new BufferedReader(new InputStreamReader(pr.getInputStream()));
String line = "";
StringBuilder response = new StringBuilder();
while ((line = b.readLine()) != null) {
    response.append(line);
}

String response_data = response.toString();

System.out.println(response_data);
log.info(response_data);
b.close();

// 2. 定义Jmeter中引用的变量名
vars.put("xxx",response_data); //把结果赋值给变量 ,方便后面调用

By the way,很多小伙伴反馈说既然用jmeter了,干嘛还往里整python代码,不是多此一举嘛?这里勇哥谈谈自己的几点愚见:

  1. 现有代码复用:有时候可能我们有一些现成的python代码用特定的操作或者业务逻辑,嵌入这些python代码就可以避免重复造轮子了

  2. 代码能力:很多测试人员的技术栈是偏python的,在使用jmeter做自动化测试时,利用python的灵活及强大的库工具就很容易入手了。

  3. 集成其他工具:可能有一些自己的python工具很好用,但是想集成到一起就可以考虑这样的偏方了

总之jmeter既然可以这样玩,那么给到用户也就多一种使用体验,多一种解决问题的可能性。

总结

以上就是勇哥今天为各位小伙伴准备的内容,如果你想了解更多关于Python自动化测试的知识和技巧,欢迎关注我:公众号\博客\CSDN\B站:测试玩家勇哥;我会不定期地分享更多的精彩内容。感谢你的阅读和支持!


题外话,勇哥打算把新建的技术交流群,打造成一个活跃的高质量技术群。工作中遇到的技术问题,都可以在里面咨询大家,还有工作内推的机会。有兴趣的小伙伴,欢迎加我(记得备注是进群还是报名学习)👇👇👇**

**👆**👆**👆长按上方二维码2秒,关注我**


勇哥,10年落魄测试老司机,技术栈偏python,目前在一家超大型房产公司担任自动化测试主管,日常工作比较繁杂,主要负责自动化测试,性能测试、软件质量管理及人员管理。工作之余专注于为粉丝进行简历修改、面试辅导、模拟面试、资料分享、一对一自动化测试教学辅导等副业发展。目前已服务十多位小伙伴,取得高薪offer。

关注公众号,测试干货及时送达

往期精选文章👇:
接口自动化测试项目2.0,让你像Postman一样编写测试用例,支持多环境切换、多业务依赖、数据库断言等
揭秘抓包利器:Python和Mitmproxy让您轻松实现接口请求抓取与分析!
构建高效的接口自动化测试框架思路
Pytest 快速入门
接口自动化之测试数据动态生成并替换
requests模块该如何封装?
接口自动化如何封装mysql操作
一文看懂python如何执行cmd命令
最通俗易懂python操作数据库
python-Threading多线程之线程锁
python正则一篇搞掂
性能测试之必备知识

性能分析思

Python + ChatGPT来实现一个智能对话的钉钉机器人
一文看懂python如何执行cmd命令
相关文章
|
20天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
56 20
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
5天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
41 9
|
2月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
117 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
10天前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
22天前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
31 2
|
28天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
2月前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
2月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
47 7