【Docker】使用 Docker 和 Streamlit 构建和部署 LangChain 支持的聊天应用程序

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【Docker】使用 Docker 和 Streamlit 构建和部署 LangChain 支持的聊天应用程序

前言

本文强调了 Docker 为 AI/ML 项目带来的价值 - 部署的速度和一致性、一次构建并随处运行的能力,以及 Docker Desktop 中提供的可加速整体开发工作流程的省时工具。


在本文中,我们将探索使用 LangChain、OpenAI API 和 Streamlit 框架创建聊天应用程序的过程。我们将演示如何使用 Docker 和Docker Compose在内部或云服务器上轻松部署应用程序。

我们在 Streamlit 公共云和 Google App Engine 上创建并部署了一个演示应用程序(图 1),以便进行快速预览。

图 1:聊天应用程序截图:LangChain 演示。

聊天应用程序组件和技术

我们将简要描述用于创建模板应用程序的应用程序组件和框架。

LangChain Python框架

LangChain框架使开发人员能够使用强大的大型语言模型(LLMs)创建应用程序。我们的演示聊天应用程序是基于Python框架构建的,其中OpenAI模型是默认选项。但是,用户可以灵活选择他们喜欢的任何LLM。


LongChain框架轻松管理输入提示,并在LLMs API生成的响应之间建立连接。


开放人工智能模型

出于演示目的,我们使用 OpenAI API 在提交提示时生成响应。

前端 Streamlit UI

Streamlit是一种轻量级且更快的构建和共享数据应用程序的方式。开发了一个带有 Streamlit 框架的简单 UI 来与聊天应用程序交互。

使用 Docker 进行部署

Docker可用于开发应用程序并将其部署到任何服务器,而无需担心依赖项和环境。在演示应用程序开发完成并在本地运行良好后,我们添加了 Docker 支持。

FROM python:3.10-slim-bullseye
ENV HOST=0.0.0.0
ENV LISTEN_PORT 8080
EXPOSE 8080
RUN apt-get update && apt-get install -y git
COPY ./requirements.txt /app/requirements.txt
RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt
WORKDIR app/
COPY ./demo_app /app/demo_app
COPY ./.streamlit /app/.streamlit
CMD ["streamlit", "run", "demo_app/main.py", "--server.port", "8080"]

前面的代码显示了用于生成演示应用程序的 Docker 映像的 Dockerfile 的内容。为了构建图像,我们使用:

docker build -t langchain-chat-app .

Docker 优化以实现轻量级和快速构建

在为企业应用程序部署应用程序时,我们必须注意所利用的资源以及执行/部署生命周期计算。

我们还解决了如何优化 Docker 构建过程以解决镜像大小问题并在每次源代码更改迭代时快速构建的问题。


# 用于构建虚拟环境的构建器镜像
FROM python:3.11-buster as builder
RUN apt-get update && apt-get install -y git
RUN pip install poetry==1.4.2
ENV POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_IN_PROJECT=1 \
POETRY_VIRTUALENVS_CREATE=1 \
POETRY_CACHE_DIR=/tmp/poetry_cache
ENV HOST=0.0.0.0
ENV LISTEN_PORT 8080
EXPOSE 8080
WORKDIR /app
#COPY pyproject.toml ./app/pyproject.toml
#COPY poetry.lock ./app/poetry.lock
COPY pyproject.toml poetry.lock ./
RUN poetry install --without dev --no-root && rm -rf $POETRY_CACHE_DIR
# 用于仅运行提供的代码及其虚拟环境的运行时镜像
FROM python:3.11-slim-buster as runtime
ENV VIRTUAL_ENV=/app/.venv \
PATH="/app/.venv/bin:$PATH"
COPY --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY ./demo_app ./demo_app
COPY ./.streamlit ./.streamlit
CMD ["streamlit", "run", "demo_app/main.py", "--server.port", "8080"]

在此 Dockerfile 中,我们有两个运行时映像标签。在第一个中,我们创建一个 Poetry 环境来形成一个虚拟环境。尽管应用程序在第二运行时映像中运行,但应用程序是在激活第一步中创建的虚拟环境后运行的。


接下来,我们将使用 构建 Docker 映像DOCKER_BUILDKIT,它提供了现代工具来快速安全地创建 Docker 映像。

DOCKER_BUILDKIT=1 docker build --target=runtime . -t langchain-chat-app:latest

Docker-compose.yaml 文件

为了运行该应用程序,我们还包含docker-compose.yml以下内容:

version: '3'
services:
langchain-chat-app:
image: langchain-chat-app:latest
build: ./app
command: streamlit run demo_app/main.py --server.port 8080
volumes:
- ./demo_app/:/app/demo_app
ports:
- 8080:8080

要在本地服务器上运行该应用程序,请使用以下命令:

docker-compose up

基础设施

借助对 Docker 的支持,可以按照基本指南将该应用程序部署到任何云基础设施。我们在以下基础设施上部署了该应用程序

Streamlit 公共云

使用 GitHub 帐户和存储库在其公共云上部署 Streamlit 应用程序

谷歌应用引擎

我们尝试使用 Docker 在 Google App Engine 上部署应用程序。该存储库包含一个app.yaml用于部署以下内容的配置文件:

# 使用Dockerfile
runtime: custom
env: flex
# 运行此示例会产生 App Engine 弹性环境的费用。
# 下面的设置是为了在测试期间降低成本,不适用于生产环境。
manual_scaling:
instances: 1
resources:
cpu: 1
memory_gb: 0.5
disk_size_gb: 10

为了在 Google App Engine 上部署聊天应用程序,我们在安装 gcloud Python SDK 后使用了以下命令:

gcloud app create --project=[YOUR_PROJECT_ID]
gcloud config set project [YOUR_PROJECT_ID]
gcloud app deploy app.yaml

可以通过以下方式访问部署在 Google App Engine 上的示例应用程序:

使用 Google Cloud Run 部署应用

我们还可以使用GCP的Cloud Run服务将应用程序部署在Google Cloud上。使用 Cloud Run 部署应用程序比 Google App Engine 更快。


以下是采用该方法的相关特点:


将应用程序打包在容器中。

将容器推送到工件注册表。

从推送的容器部署服务。

让我们逐步了解使用 Google Cloud Run 部署应用程序所遵循的步骤。我们假设已经在 Google Cloud 上创建了一个项目。

1.启动服务

可以使用以下方式启用服务gcloud sdk

gcloud services enable cloudbuild.googleapis.com
gcloud services enable run.googleapis.com

2. 创建角色并将其添加到服务帐户

使用以下命令集,我们创建一个服务帐户并设置适当的权限。修改服务SERVICE_ACCOUNT and PROJECT_ID

gcloud iam service-accounts create langchain-app-cr \
--display-name="langchain-app-cr"
gcloud projects add-iam-policy-binding langchain-chat \
--member="serviceAccount:langchain-app-cr@langchain-chat.iam.gserviceaccount.com" \
--role="roles/run.invoker"
gcloud projects add-iam-policy-binding langchain-chat \
--member="serviceAccount:langchain-app-cr@langchain-chat.iam.gserviceaccount.com" \
--role="roles/serviceusage.serviceUsageConsumer"
gcloud projects add-iam-policy-binding langchain-chat \
--member="serviceAccount:langchain-app-cr@langchain-chat.iam.gserviceaccount.com" \
--role="roles/run.admin"

3.生成并推送Docker镜像

使用以下命令,我们可以生成镜像并将其推送到ArtifactsRegistry。但是,如果这是第一次,我们需要创建具有 Docker 占位符权限的存储库:

DOCKER_BUILDKIT=1 docker build --target=runtime . -t australia-southeast1-docker.pkg.dev/langchain-chat/app/langchain-chat-app:latest
docker push australia-southeast1-docker.pkg.dev/langchain-chat/app/langchain-chat-app:latest


以下是生成工件存储库和分配权限所需的命令:

gcloud auth configure-docker australia-southeast1-docker.pkg.dev
gcloud artifacts repositories create app \
--repository-format=docker \
--location=australia-southeast1 \
--description="A Langachain Streamlit App" \
--async

现在将部署该应用程序。

结论

本文深入探讨了开发和部署由 LangChain、OpenAI API 和 Streamlit 提供支持的聊天应用程序所需的各种工具和技术。在此过程中还利用了Docker框架。


该应用程序演示可在 Streamlit 公共云和 Google App Engine 上使用。由于 Docker 支持,开发人员可以将其部署在他们喜欢的任何云平台上。


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
4天前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
25 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
2天前
|
存储 监控 Linux
docker构建镜像详解!!!
本文回顾了Docker的基本命令和管理技巧,包括容器和镜像的增删改查操作,容器的生命周期管理,以及如何通过端口映射和数据卷实现容器与宿主机之间的网络通信和数据持久化。文章还详细介绍了如何使用Docker部署一个简单的Web应用,并通过数据卷映射实现配置文件和日志的管理。最后,文章总结了如何制作自定义镜像,包括Nginx、Python3和CentOS镜像,以及如何制作私有云盘镜像。
15 2
|
10天前
|
Kubernetes 负载均衡 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
本文介绍了Docker和Kubernetes在构建高效微服务架构中的应用,涵盖基本概念、在微服务架构中的作用及其实现方法。通过具体实例,如用户服务、商品服务和订单服务,展示了如何利用Docker和Kubernetes实现服务的打包、部署、扩展及管理,确保微服务架构的稳定性和可靠性。
48 7
|
9天前
|
Kubernetes 负载均衡 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
【10月更文挑战第22天】随着云计算和容器技术的快速发展,微服务架构逐渐成为现代企业级应用的首选架构。微服务架构将一个大型应用程序拆分为多个小型、独立的服务,每个服务负责完成一个特定的功能。这种架构具有灵活性、可扩展性和易于维护的特点。在构建微服务架构时,Docker和Kubernetes是两个不可或缺的工具,它们可以完美搭档,为微服务架构提供高效的支持。本文将从三个方面探讨Docker和Kubernetes在构建高效微服务架构中的应用:一是Docker和Kubernetes的基本概念;二是它们在微服务架构中的作用;三是通过实例讲解如何使用Docker和Kubernetes构建微服务架构。
36 6
|
8天前
|
负载均衡 应用服务中间件 nginx
基于Nginx和Consul构建自动发现的Docker服务架构——非常之详细
通过使用Nginx和Consul构建自动发现的Docker服务架构,可以显著提高服务的可用性、扩展性和管理效率。Consul实现了服务的自动注册与发现,而Nginx则通过动态配置实现了高效的反向代理与负载均衡。这种架构非常适合需要高可用性和弹性扩展的分布式系统。
16 4
|
9天前
|
负载均衡 应用服务中间件 nginx
基于Nginx和Consul构建自动发现的Docker服务架构——非常之详细
通过使用Nginx和Consul构建自动发现的Docker服务架构,可以显著提高服务的可用性、扩展性和管理效率。Consul实现了服务的自动注册与发现,而Nginx则通过动态配置实现了高效的反向代理与负载均衡。这种架构非常适合需要高可用性和弹性扩展的分布式系统。
22 3
|
3月前
|
运维 Java Devops
阿里云云效操作报错合集之部署docker时遇到报错,该怎么办
本合集将整理呈现用户在使用过程中遇到的报错及其对应的解决办法,包括但不限于账户权限设置错误、项目配置不正确、代码提交冲突、构建任务执行失败、测试环境异常、需求流转阻塞等问题。阿里云云效是一站式企业级研发协同和DevOps平台,为企业提供从需求规划、开发、测试、发布到运维、运营的全流程端到端服务和工具支撑,致力于提升企业的研发效能和创新能力。
|
运维 Kubernetes 前端开发
【云原生】阿里云服务器部署 Docker Swarm集群
阿里云服务器 一键部署 Docker Swarm 集群!
667 0
【云原生】阿里云服务器部署 Docker Swarm集群
|
弹性计算 数据可视化 关系型数据库
使用阿里云部署基于docker的mysql云服务
本篇文章将介绍如何使用阿里云安装docker、部署mysql服务,并远程连接至远端mysql
678 1
使用阿里云部署基于docker的mysql云服务
|
弹性计算 Shell Docker
阿里云一键部署 Docker Datacenter
使用ROS模板在阿里云上一键部署Docker Datacenter
7825 0