[数据结构 -- 手撕排序算法第六篇] 递归实现快速排序(集霍尔版本,挖坑法,前后指针法为一篇的实现方法,很能打)2

简介: [数据结构 -- 手撕排序算法第六篇] 递归实现快速排序(集霍尔版本,挖坑法,前后指针法为一篇的实现方法,很能打)2

5、前后指针版本

5.1 实现思路

我们规定排升序,排序数组名称为a,基准值 key。
1.选出一个key,key可以是需要排序的数组中任意一个元素,我们依然选key为a[left];


2.定义一个prev指针,和一个cur指针,初始化 prev 指向数组首部位置,cur 指向 prev 的下一个位置。cur先走,cur 找小于 key 的元素,找到之后停下来,让 prev++,然后交换 (a[cur], a[prev])。交换完继续往后走,cur 找的值不小于 key,cur继续往后走,找到后让 prev++,交换 (a[cur], a[prev]),不断重复此步骤;


3.当cur走完整个数组的时候,交换(a[left], a[prev]),这时key的最终位置就确定下来了。key 将数组分为左右两个子区间,左子区间小于 key,右子区间大于 key;


4.左右子区间继续重复前 3 步骤,递归下去就实现了数组的排序。

5.2 思路图解



这里不断交换其实是将小于 key 的值一直在往前抛,把大于 key 的值往后抛,cur与prev 之间的值其实就是大于 key 的所有值,不断交换就实现了最终以 key 划分的左右区间,左区间小于 key,右区间大于 key。

5.3 前后指针法代码实现

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
  int prev = left;
  int cur = left + 1;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi] && ++prev != cur)
    {
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[keyi], &a[prev]);
  return prev;
}
void QuickSort(int* a, int left, int right)
{
  if (left >= right)
    return;
  int keyi = PartSort3(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}

5.4 前后指针法代码测试

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
  int prev = left;
  int cur = left + 1;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi] && ++prev != cur)
    {
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[keyi], &a[prev]);
  return prev;
}
void QuickSort(int* a, int left, int right)
{
  if (left >= right)
    return;
  int keyi = PartSort3(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}
void test()
{
  int a[] = { 6,3,2,1,5,7,9 };
  QuickSort(&a, 0, sizeof(a) / sizeof(int) - 1);
  Print(&a, sizeof(a) / sizeof(int));
}
int main()
{
  test();
  return 0;
}



6、时间复杂度分析

6.1 最好情况

上面的三种情况下,最好情况时间复杂度是O(N* logN)。

每次 key 被排到区间的中间位置,像二叉树一样要递归 logN 次,每一次的子区间排序的时间复杂度是O(N),所以最好的情况就是O(N * logN)。


6.2 最坏情况

当数组有序的时候排序,无论 key 选最左边还是最右边,时间复杂度都是O(N^2)。



7、优化快速排序

快速排序的优化有两种思想:

1.我们对选key法可以进行优化;

2.递归到小的子区间,我们可以考虑使用插入排序,也称小区间优化。

7.1 选 key 优化

选 key 优化主要是针对数组有序,或者是接近有序。

对选 key 的优化我们有两种思路:

1.随机选 key;

2.三数取中选 key。(拿出left, mid, right,在下标为这三个位置的数中选出一个中间值作为 key)。

第一种思路是不可控的,所以第二种选 key 的思路才是最合适的。

下面是三数取中的优化代码:

int GetMidIndex(int* a, int left, int right)
{
  int mid = (left + right) / 2;
  if (a[left] < a[mid])
  {
    if (a[mid] < a[right])
      return mid;
    else if (a[left] < a[right])
      return right;
    else
      return left;
  }
  else //a[left] > a[mid]
  {
    if (a[mid] > a[right])
      return mid;
    else if (a[left] > a[right])
      return right;
    else
      return left;
  }
}
int PartSort3(int* a, int left, int right)
{
  int midi = GetMidIndex(a, left, right);
  Swap(&a[left], &a[midi]);
  int prev = left;
  int cur = left + 1;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi] && ++prev != cur)
    {
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[prev], &a[keyi]);
  keyi = prev;
  return keyi;
}

我们取到中后,将该数字与 a[left]交换,依旧用之前的前后指针法的思路是没有问题的。霍尔版本与挖坑法是一样的优化方法。


如果我们不做三数取中的优化,当数组是有序或者接近有序的时候,时间复杂度会是最坏情况,O(N^2)。经过三数取中后,如果数组是有序的,时间复杂度仍是O(N * logN)。

7.2 小区间优化

在递归的时候,我们之前画的图中不难看到,在不断的划分的时候,到后面划分的越来越多了,当数据量特别大的时候,对栈的消耗会很大,会造成栈溢出的风险。因此,当划分到一定的程度,我们不再划分,直接选择插入排序。一般的情况下,当我们的子区间数据个数为10的时候,我们就不再递归了,直接就用插入排序。


实现代码:

// 插入排序
//时间复杂度(最坏):O(N^2) -- 逆序
//时间复杂度(最好):O(N) -- 顺序
void InsertSort(int* a, int n)
{
  for (int i = 0; i < n - 1; i++)
  {
    int end = i;
    int tmp = a[i + 1];
    while (end >= 0)
    {
      if (a[end] > tmp)
      {
        a[end + 1] = a[end];
        end--;
      }
      else
      {
        break;
      }
    }
    a[end + 1] = tmp;
  }
}
int GetMidIndex(int* a, int left, int right)
{
  int mid = (left + right) / 2;
  if (a[left] < a[mid])
  {
    if (a[mid] < a[right])
      return mid;
    else if (a[left] < a[right])
      return right;
    else
      return left;
  }
  else //a[left] > a[mid]
  {
    if (a[mid] > a[right])
      return mid;
    else if (a[left] > a[right])
      return right;
    else
      return left;
  }
}
// 快速排序前后指针法
//[left, right]
int PartSort3(int* a, int left, int right)
{
  int midi = GetMidIndex(a, left, right);
  Swap(&a[left], &a[midi]);
  int prev = left;
  int cur = left + 1;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi] && ++prev != cur)
    {
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[prev], &a[keyi]);
  keyi = prev;
  return keyi;
}
void QuickSort(int* a, int left, int right)
{
  //子区间只有一个值,或者子区间不存在的时候递归结束
  if (left >= right)
    return;
  //小区间优化
  if (right - left + 1 < 10)
  {
    InsertSort(a + left, right - left + 1);
  }
  int keyi = PartSort3(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}

这两种优化的方式在时间与空间两个方面都有一定程度的提升,但快速排序的本质没有改变,优化只是在原有的思想上锦上添花。

相关文章
|
3月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
74 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
172 4
|
3月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
74 4
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
159 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
3月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
144 61
|
23天前
|
搜索推荐 C++
【C++数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】
快速排序是一种高效的排序算法,基于分治策略。它的主要思想是通过选择一个基准元素(pivot),将数组划分成两部分。一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素。然后对这两部分分别进行排序,最终使整个数组有序。(第一行是元素个数,第二行是待排序的原始关键字数据。本关任务:实现快速排序算法。开始你的任务吧,祝你成功!
35 7
|
23天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
41 2
|
3月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
3月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
3月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
137 23