[MGeo应用]使用python+AI模型拆分Excel中地址的省市区街道

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: [MGeo应用]使用python+AI模型拆分Excel中地址的省市区街道

在处理人员登记信息或者收货地址管理时,常常需要把地址里的省市区镇拆分出来方便后续分类管理。

例如对于地址“上海市静安区乌鲁木齐中路12号”,单独拆分出“上海市/静安区”。

目前一些基于规则的方法无法覆盖到所有情况,比如:

  • 通过“xx省”“xx市”后缀来找省市区的,当缺少该后缀便无法工作。例如:上海静安华山医院,按照后缀是找不到上海和静安的。
  • 通过字符长度来切割的,例如设置省的长度为3,当遇到长度不同的省市区名称变会出错。例如:内蒙古自治区,按照长度切割,内蒙古会被识别为省,自治区会被识别为市。

我们最近开源了一个地址AI模型MGeo系列,包括一个预训练底座和多个下游任务

其中一个下游任务就是识别地址里面的各个元素,包括省、市、区、街道。模型具有很高的准确率,因此适合来解决上述问题。

模型的安装使用也比较简单。

首先需要安装python3.7的环境,没有anaconda的可以直接下载安装python3.7:

conda create -n py37testmaas python=3.7
conda activate py37testmaas

安装相关依赖:

cpu机器:pip install cryptography==3.4.8  tensorflow==1.15.5  torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 openpyxl
gpu机器:pip install cryptography==3.4.8  tensorflow-gpu==1.15.5  torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 openpyxl

安装modelscope:

pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html

确认下modelscope版本大于等于1.2.0:

pip freeze | grep modelscope

测试下模型是否可用:

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
task = Tasks.token_classification
model = 'damo/mgeo_geographic_elements_tagging_chinese_base'
inputs = '浙江省杭州市余杭区阿里巴巴西溪园区'
pipeline_ins = pipeline(task=task, model=model)
print(pipeline_ins(input=inputs))
#输出 {'output': [{'type': 'prov', 'start': 0, 'end': 3, 'span': '浙江省'}, {'type': 'city', 'start': 3, 'end': 6, 'span': '杭州市'},{'type': 'district', 'start': 6, 'end': 9, 'span': '余杭区'}, {'type': 'poi', 'start': 9, 'end': 17, 'span': '阿里巴巴西溪园区'}]}

可以看到这个模型能将地址里面的省市区街道都拆分出来。剩下的工作便是读取excel内容、识别省市区街道、保存识别结果了。

我们将需要处理的文件保存在test.xlsx里面:

image.png

创建并保存自动处理脚本process.py:

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import pandas as pd
def get_pcdt(inputs):
task = Tasks.token_classification
model = 'damo/mgeo_geographic_elements_tagging_chinese_base'
pipeline_ins = pipeline(task=task, model=model)
res = pipeline_ins(input=inputs)
pcdt = {'prov': '', 'city': '', 'district': '', 'town': ''}
for r in res['output']:
if r['type'] in pcdt:
pcdt[r['type']] = r['span']
return pcdt
df = pd.read_excel('test.xlsx')
total_pcdt = {'prov': [], 'city': [], 'district': [], 'town': []}
for line in df['address']:
res = get_pcdt(line)
for k in res:
total_pcdt[k].append(res[k])
for k in total_pcdt:
df[k] = total_pcdt[k]
df.to_excel('test_out.xlsx', index=False, header=True)

运行process.py:

python process.py

程序自动运行结束后我们从test_out.xlsx可以得到省市区街道的抽取结果:

image.png

使用测试数据与源代码可以访问MGeoExample/拆分Excel中地址的省市区街道 at main · PhantomGrapes/MGeoExample · GitHub

相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
119 10
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
81 3
|
11天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
65 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
5天前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
1月前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
43 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
14天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
51 0
|
1月前
|
机器学习/深度学习 前端开发 数据处理
利用Python将Excel快速转换成HTML
本文介绍如何使用Python将Excel文件快速转换成HTML格式,以便在网页上展示或进行进一步的数据处理。通过pandas库,你可以轻松读取Excel文件并将其转换为HTML表格,最后保存为HTML文件。文中提供了详细的代码示例和注意事项,帮助你顺利完成这一任务。
43 0
|
2月前
|
设计模式 开发者 Python
Python编程中的设计模式应用与实践感悟####
本文作为一篇技术性文章,旨在深入探讨Python编程中设计模式的应用价值与实践心得。在快速迭代的软件开发领域,设计模式如同导航灯塔,指引开发者构建高效、可维护的软件架构。本文将通过具体案例,展现设计模式如何在实际项目中解决复杂问题,提升代码质量,并分享个人在实践过程中的体会与感悟。 ####

热门文章

最新文章