Python3 JSON 数据解析

简介: Python3 JSON 数据解析

Python3 JSON 数据解析

JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式。
Python3 中可以使用 json 模块来对 JSON 数据进行编解码,它包含了两个函数:

  • json.dumps(): 对数据进行编码。
  • json.loads(): 对数据进行解码。

在这里插入图片描述
在 json 的编解码过程中,Python 的原始类型与 json 类型会相互转换,具体的转化对照如下:

Python 编码为 JSON 类型转换对应表:

Python JSON
dict object
list, tuple array
str string
int, float, int- & float-derived Enums number
True true
False false
None null

JSON 解码为 Python 类型转换对应表:

Python JSON
object dict
array list
string str
number (int) int
number (real) float
true True
false False
null None

JSON文件

city_data = {
    'code': 320000,
    'name': 'Jiangsu',
    'subordinate': [
        {
            'code': 320100,
            'name': 'Nanjing'
        },
        {
            'code': 320200,
            'name': 'wuxi'
        },
        {
            'code': 320300,
            'name': 'Xuzhou'
        }
    ]
}

对于上面的python字典,也可以用json.dump()方法将其写入到文件中。同样地,使用json.load()方法也可以从类文件对象中读取数据。

# 处理json数据需要用到json库
import json
# 将字典city_data写入到文件city.json中
with open('city.json', 'w') as f:
    json.dump(city_data, f)
# 从city.json中读取json数据并转化为python字典
with open('city.json', 'r') as f:
    data = json.load(f)
# 数据其实没有变
>>> city_data == data
True

注意:json.dump()和json.dumps()方法有着细微但重要的区别,前者将字典转化为类文件对象,因此可以直接写入文件;后者将字典转化为字符串,可以读取其中的数据,但是不能直接写入文件。

json.dumps 与 json.loads 实例

以下实例演示了 Python 数据结构转换为JSON:

#!/usr/bin/python3

import json

# Python 字典类型转换为 JSON 对象
data = {
    'no' : 1,
    'name' : 'Runoob',
    'url' : 'http://www.runoob.com'
}

json_str = json.dumps(data)
print ("Python 原始数据:", repr(data))
print ("JSON 对象:", json_str)

执行以上代码输出结果为:

Python 原始数据: {'url': 'http://www.runoob.com', 'no': 1, 'name': 'Runoob'}
JSON 对象: {"url": "http://www.runoob.com", "no": 1, "name": "Runoob"}

通过输出的结果可以看出,简单类型通过编码后跟其原始的repr()输出结果非常相似。

接着以上实例,我们可以将一个JSON编码的字符串转换回一个Python数据结构:

#!/usr/bin/python3

import json

# Python 字典类型转换为 JSON 对象
data1 = {
    'no' : 1,
    'name' : 'Runoob',
    'url' : 'http://www.runoob.com'
}

json_str = json.dumps(data1)
print ("Python 原始数据:", repr(data1))
print ("JSON 对象:", json_str)

# 将 JSON 对象转换为 Python 字典
data2 = json.loads(json_str)
print ("data2['name']: ", data2['name'])
print ("data2['url']: ", data2['url'])

执行以上代码输出结果为:

Python 原始数据: {'name': 'Runoob', 'no': 1, 'url': 'http://www.runoob.com'}
JSON 对象: {"name": "Runoob", "no": 1, "url": "http://www.runoob.com"}
data2['name']:  Runoob
data2['url']:  http://www.runoob.com
相关文章
|
2月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
213 0
|
2月前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
398 4
|
2月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
3月前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
3月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
258 2
|
3月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
3月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
872 0
|
3月前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
901 0

热门文章

最新文章

推荐镜像

更多