13层网络如何拿下83%精度?极简神经网络架构VanillaNet作者亲自解读

简介: 13层网络如何拿下83%精度?极简神经网络架构VanillaNet作者亲自解读


过去几十年里,人工神经网络取得了显著的进展,这归功于一种理念:增加网络的复杂度可以提高性能。

从 AlexNet 引爆了深度学习在计算机视觉的热潮后,研究者们为了提升深度网络的性能,精心地设计出了各种各样的模块,包括 ResNet 中的残差,ViT 中的注意力机制等。然而,从 ResNet 到 ViT 以来,尽管深层的复杂神经网络可以取得很好的性能,但在实际应用中,这些网络的复杂度和硬件亲和程度使其部署时常常会遇到困难。

因此,来自华为诺亚、悉尼大学的研究者们设计了一种极简的神经网络模型 VanillaNet,期望用最简单的,类似 LeNet 和 AlexNet 这样的结构,达到甚至超越现在网络的精度,成为新一代的视觉骨干网络。

本工作的核心是如何让一个浅层网络在没有复杂链接和 attention 的情况下,尽可能地提升精度,针对极简网络面临的非线性大幅下降的技术难题,本工作提出了深层训练和级数激活函数两个方案来解决此问题。最终,6 层的 VanillaNet 可以超过 ResNet-34,13 层的 VanillaNet 在 ImageNet 可以达到 83% 的 top1 精度,超过几百层网络的性能,并展现了非凡的硬件效率优势。

为了更好的帮助大家了解这项研究,机器之心最新一期线上分享邀请到了论文作者之一陈汉亭,为大家解读他们近期的工作 VanillaNet。



分享主题:VanillaNet:深度学习中极简主义的力量

嘉宾简介:陈汉亭,华为诺亚方舟实验室研究员,主要研究方向为深度学习和计算机视觉。他在 NeurIPS/CVPR/TPAMI 等顶会顶刊发表 20 余篇论文,多项研究成果应用于华为产品。他的谷歌学术引用 2000+,其中加法网络、IPT 等工作受到广泛关注。

分享摘要:华为诺亚实验室的研究员提出了一种极简网络架构 VanillaNet,不含残差链接,自注意力等复杂的模块,却可以在计算机视觉任务上取得惊人的性能。在 ImageNet 图像识别任务上,13 层的 VanillaNet 在 ImageNet 可以达到 83% 的 top1 精度,速度超过同精度的 Swin Transformer 两倍以上。

相关链接:

相关文章
|
4月前
|
运维 监控 数据可视化
Python 网络请求架构——统一 SOCKS5 接入与配置管理
通过统一接入端点与标准化认证,集中管理配置、连接策略及监控,实现跨技术栈的一致性网络出口,提升系统稳定性、可维护性与可观测性。
|
9月前
|
小程序 前端开发
2025商业版拓展校园圈子论坛网络的创新解决方案:校园跑腿小程序系统架构
校园跑腿小程序系统是一款创新解决方案,旨在满足校园配送需求并拓展校友网络。跑腿员可接单配送,用户能实时跟踪订单并评价服务。系统包含用户、客服、物流、跑腿员及订单模块,功能完善。此外,小程序增设信息咨询发布、校园社区建设和活动组织等功能,助力校友互动、经验分享及感情联络,构建紧密的校友网络。
368 1
2025商业版拓展校园圈子论坛网络的创新解决方案:校园跑腿小程序系统架构
|
9月前
|
人工智能 监控 安全
NTP网络子钟的技术架构与行业应用解析
在数字化与智能化时代,时间同步精度至关重要。西安同步电子科技有限公司专注时间频率领域,以“同步天下”品牌提供可靠解决方案。其明星产品SYN6109型NTP网络子钟基于网络时间协议,实现高精度时间同步,广泛应用于考场、医院、智慧场景等领域。公司坚持技术创新,产品通过权威认证,未来将结合5G、物联网等技术推动行业进步,引领精准时间管理新时代。
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
518 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
6月前
|
机器学习/深度学习 并行计算 算法
【图像分割】基于神经气体网络的图像分割与量化(Matlab代码实现)
【图像分割】基于神经气体网络的图像分割与量化(Matlab代码实现)
106 0
|
9月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
311 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
9月前
|
Cloud Native 区块链 数据中心
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
210 1
|
11月前
|
机器学习/深度学习 测试技术 网络架构
FANformer:融合傅里叶分析网络的大语言模型基础架构
近期大语言模型(LLM)的基准测试结果显示,OpenAI的GPT-4.5在某些关键评测中表现不如规模较小的模型,如DeepSeek-V3。这引发了对现有LLM架构扩展性的思考。研究人员提出了FANformer架构,通过将傅里叶分析网络整合到Transformer的注意力机制中,显著提升了模型性能。实验表明,FANformer在处理周期性模式和数学推理任务上表现出色,仅用较少参数和训练数据即可超越传统Transformer。这一创新为解决LLM扩展性挑战提供了新方向。
336 5
FANformer:融合傅里叶分析网络的大语言模型基础架构
|
11月前
|
安全 容灾 网络安全
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
558 3
|
12月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索:自动化设计神经网络的方法
在人工智能(AI)和深度学习(Deep Learning)快速发展的背景下,神经网络架构的设计已成为一个日益复杂而关键的任务。传统上,研究人员和工程师需要通过经验和反复试验来手动设计神经网络,耗费大量时间和计算资源。随着模型规模的不断扩大,这种方法显得愈加低效和不够灵活。为了解决这一挑战,神经架构搜索(Neural Architecture Search,NAS)应运而生,成为自动化设计神经网络的重要工具。

热门文章

最新文章