【算法入门】 有效括号序列|逆波兰表达式求值|点击消除(上)

简介: 【算法入门】 有效括号序列|逆波兰表达式求值|点击消除

🔥前言

本专栏收录的均为牛客网的算法题目,内含链表、双指针、递归、动态规划、基本数据结构等算法思想的具体运用。牛客网不仅有大量的经典算法题目,也有大厂的面试真题,面试、找工作完全可以来这里找机会。此外,网站内的编码主题多样化,调试功能可运用性强,可谓是非常注重用户体验。这么好的免费刷题网站还不快入手吗,快去注册开启算法百炼成神之路吧!


f87f0ef709fc421a8222cace5ea4cf88.pngfc02a69cdd224ad2a3c5fe49cf84f10d.png




1、AB3 有效括号序列

题目链接:有效括号序列


题目描述:


c731fbcfa7f94144930663177bcf5b58.png


1.1、解题思路

采用右括号入栈的思想:


对s字符串进行遍历,如果是字符'('、'['、'{'那就把其对应的右括号入栈。

如果不是这些左括号,那就让该字符与辅助栈顶比较,如果不相等说明不匹配:

这里要先判断辅助栈是否为空,若为空,说明先前没有左括号入栈。

如果字符与辅助栈顶相等,那就进行出栈操作,最后返回栈的empty方法即可。

1.2、代码实现与解析

本题源码:

class Solution {
  public:
    /**
     *
     * @param s string字符串
     * @return bool布尔型
     */
    bool isValid(string s) {
      //辅助栈
        stack<char> stk;
        for (int i = 0; i < s.length(); i++) {
            if (s[i] == '(')
                stk.push(')');
            else if (s[i] == '[')
                stk.push(']');
            else if (s[i] == '{')
                stk.push('}');
            else {
                if (stk.empty() || s[i] != stk.top())
                    return false;
                    stk.pop();
                }
        }
        return stk.empty();
    }
};

重要注释:


辅助栈需要字符型char,因为单个字符串可当作字符处理

如果遍历字符串是三种左括号,那就将对应右括号入栈

如果是右三种括号,判断栈是否为空或者是否与栈顶相等,不满足则出栈

如果empty方法为真,足以说明该字符串满足括号匹配


目录
相关文章
|
2月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
2月前
|
存储 算法
算法入门:专题一:双指针(有效三角形的个数)
给定一个数组,找出能组成三角形的三元组个数。利用“两边之和大于第三边”的性质,先排序,再用双指针优化。固定最大边,左右指针从区间两端向内移动,若两短边之和大于最长边,则中间所有组合均有效,时间复杂度由暴力的O(n³)降至O(n²)。
|
2月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
5月前
|
机器学习/深度学习 数据采集 算法
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
你天天听“数据挖掘”,可它到底在“挖”啥?——数据挖掘算法入门扫盲篇
129 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
261 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
200 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
225 3
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
175 8