【C++初阶】C++——模板初阶与泛型编程

简介: 【C++初阶】C++——模板初阶与泛型编程

1. 泛型编程

编写一个函数,用于两个数的交换。在C语言中,我们会用如下方法:

// 交换两个整型
void Swapi(int* p1, int* p2)
{
  int tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
// 交换两个双精度浮点型
void Swapd(double* p1, double* p2)
{
  double tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}

因为C语言不支持函数重载,所以用于交换不同类型变量的函数的函数名是不能相同的,并且传参形式必须是址传递,不能是值传递。

而在学习了C++的函数重载和引用后,我们又会用如下方法实现两个数的交换:

// 交换两个整型
void Swap(int& x, int& y)
{
  int tmp = x;
  x = y;
  y = tmp;
}
// 交换两个双精度浮点型
void Swap(double& x, double& y)
{
  double tmp = x;
  x = y;
  y = tmp;
}

C++的函数重载使得用于交换不同类型变量的函数可以拥有相同的函数名,并且传参使用引用传参,使得代码看起来更加简单。


但这种代码仍然存在它的不足:

 1、重载的多个函数仅仅只是类型不同,代码的复用率比较低,只要出现新的类型需要交换,就需要新增对应的重载函数。

 2、代码的可维护性比较低,其中一个重载函数出现错误可能意味着所有的重载函数都出现了错误。


我们能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成相应的代码呢?


像做月饼的模子一样,我们放入不同颜色的材料,就能得到形状相同但颜色不同的月饼。


 如果在C++中,也能够存在这样一个模具,通过给这个模具填充不同颜色的材料(类型),从而得到形状相同但颜色不同的月饼(生成具体类型的代码),那将会大大减少代码的冗余。


泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

2. 函数模板

函数模板的概念

 函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

函数模板的格式

template<typename T1,typename T2,…,typename Tn>

返回类型 函数名(参数列表)

{

  //函数体

}

例如:

template<typename T>
void Swap(T& x, T& y)
{
  T tmp = x;
  x = y;
  y = tmp;
}

注意:typename是用来定义模板参数的关键字,也可以用class代替,但是不能用struct代替。

3. 函数模板的原理

那么函数模板的底层原理是什么呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生产淘汰掉了很多手工产品。其本质就是将重复的工作交给了机器去完成。


函数模板是一个蓝图,它本身并不是函数。是编译器产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器。

image.png在编译器编译阶段,对于函数模板的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如,当用int类型使用函数模板时,编译器通过对实参类型的推演,将T确定为int类型,然后产生一份专门处理int类型的代码,对于double类型也是如此。

4. 函数模板的实例化

用不同类型的参数使用模板时,称为模板的实例化。模板实例化分为隐式实例化和显示实例化。

4.1 隐式实例化

隐式实例化:让编译器根据实参推演模板参数的实际类型

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{
  return x + y;
}
int main()
{
  int a = 10, b = 20;
  int c = Add(a, b); //编译器根据实参a和b推演出模板参数为int类型
  return 0;
}

注意:使用模板时,编译器一般不会进行类型转换操作。所以,以下代码将不能通过编译:

int a = 10;
  double b = 1.1;
  int c = Add(a, b);

因为在编译期间,编译器根据实参推演模板参数的实际类型时,根据实参a将T推演为int,根据实参b将T推演为double,但是模板参数列表中只有一个T,编译器无法确定此处应该将T确定为int还是double。

 此时,我们有两种处理方式,第一种就是我们在传参时将b强制转换为int类型,第二种就是使用下面说到的显示实例化。

e219106900574a17bb0604fa858240f3.png

4.2 显示实例化

显示实例化:在函数名后的<>中指定模板参数的实际类型

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{
  return x + y;
}
int main()
{
  int a = 10;
  double b = 1.1;
  int c = Add<int>(a, b); //指定模板参数的实际类型为int
  return 0;
}

注意:使用显示实例化时,如果传入的参数类型与模板参数类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功,则编译器将会报错。

5. 函数模板的匹配原则

一、一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

#include <iostream>
using namespace std;
//专门用于int类型加法的非模板函数
int Add(const int& x, const int& y)
{
  return x + y;
}
//通用类型加法的函数模板
template<typename T>
T Add(const T& x, const T& y)
{
  return x + y;
}
int main()
{
  int a = 10, b = 20;
  int c = Add(a, b); //调用非模板函数,编译器不需要实例化
  int d = Add<int>(a, b); //调用编译器实例化的Add函数
  return 0;
}

二、对于非模板函数和同名的函数模板,如果其他条件都相同,在调用时会优先调用非模板函数,而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数,那么选择模

#include <iostream>
using namespace std;
//专门用于int类型加法的非模板函数
int Add(const int& x, const int& y)
{
  return x + y;
}
//通用类型加法的函数模板
template<typename T1, typename T2>
T1 Add(const T1& x, const T2& y)
{
  return x + y;
}
int main()
{
  int a = Add(10, 20); //与非模板函数完全匹配,不需要函数模板实例化
  int b = Add(2.2, 2); //函数模板可以生成更加匹配的版本,编译器会根据实参生成更加匹配的Add函数
  return 0;
}

三、模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{
  return x + y;
}
int main()
{
  int a = Add(2, 2.2); //模板函数不允许自动类型转换,不能通过编译
  return 0;
}

因为模板函数不允许自动类型转换,所以不会将2自动转换为2.0,或是将2.2自动转换为2。

6. 类模板

类模板的定义格式

template<class T1,class T2,…,class Tn>

class 类模板名

{

  //类内成员声明

};

例如:

template<typename T>
class Stack
{
public:
  Stack(size_t capacity = 4)
    :_a(nullptr)
    ,_capacity(0)
    ,_top(0)
  {
    if (capacity > 0)
    {
      _a = new T[capacity];
      _capacity = capacity;
      _top = 0;
    }
  }
  ~Stack()
  {
    delete[] _a;
    _a = nullptr;
    _capacity = _top = 0;
  }
  void Push(const T& x)
  {
    if (_top==_capacity)
    {
      size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;
      T* tmp = new T[newcapacity];
      if (_a)
      {
        memcpy(tmp, _a, sizeof(T)*(_top));
        delete[] _a;
      }
      _a = tmp;
      _capacity = newcapacity;
    }
    _a[_top] = x;
    ++_top;
  }
  void Pop()
  {
    assert(_top > 0);
    --top;
  }
  bool Empty()
  {
    return _top == 0;
  }
  T& Top()
  {
    assert(_top > 0);
    return _a[_top - 1];
  }
private:
  T* _a;
  size_t _top;
  size_t _capacity;
};

注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。

template<typename T>
class Stack
{
public:
  Stack(size_t capacity = 4)
    :_a(nullptr)
    , _capacity(0)
    , _top(0)
  {
    if (capacity > 0)
    {
      _a = new T[capacity];
      _capacity = capacity;
      _top = 0;
    }
  }
  ~Stack()
  {
    delete[] _a;
    _a = nullptr;
    _capacity = _top = 0;
  }
  void Pop()
  {
    assert(_top > 0);
    --top;
  }
  bool Empty()
  {
    return _top == 0;
  }
  T& Top()
  {
    assert(_top > 0);
    return _a[_top - 1];
  }
private:
  T* _a;
  size_t _top;
  size_t _capacity;
};
//类模板中的成员函数在类外定义,需要加模板参数列表
template<typename T>
void Stack<T>::Push(const T& x)
{
  if (_top == _capacity)
  {
    size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;
    T* tmp = new T[newcapacity];
    if (_a)
    {
      memcpy(tmp, _a, sizeof(T) * (_top));
      delete[] _a;
    }
    _a = tmp;
    _capacity = newcapacity;
  }
  _a[_top] = x;
  ++_top;
}

除此之外,类模板不支持分离编译,即声明在xxx.h文件中,而定义却在xxx.cpp文件中。

7. 类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后面根<>,然后将实例化的类型放在<>中即可。

//Stack不是真正的类,Stack<int>和Stack<double>才是真正的类
  Stack<int> st1;
  Stack<double> st2;

注意:类模板名字不是真正的类,而实例化的结果才是真正的类。

8.总结:

今天我们认识并具体学习了模板与泛型编程。C++相比于C语言有这么多丰富的接口与类型,都源于泛型编程。本章的内容为模板初阶知识,为接下来的STL学习打下坚实的基础。接下来,我们将进行STL中string类的学习。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

c3ad96b16d2e46119dd2b9357f295e3f.jpg

相关文章
|
3月前
|
存储 C++ UED
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
505 69
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
84 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
39 3
|
3月前
|
安全 程序员 编译器
【实战经验】17个C++编程常见错误及其解决方案
想必不少程序员都有类似的经历:辛苦敲完项目代码,内心满是对作品品质的自信,然而当静态扫描工具登场时,却揭示出诸多隐藏的警告问题。为了让自己的编程之路更加顺畅,也为了持续精进技艺,我想借此机会汇总分享那些常被我们无意间忽视却又导致警告的编程小细节,以此作为对未来的自我警示和提升。
467 13
|
2月前
|
消息中间件 存储 安全
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
39 0
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
28 1
|
3月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
79 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
11天前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
51 18
|
11天前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
37 13