白话Elasticsearch07- 深度探秘搜索技术之基于term+bool实现的multiword搜索底层剖析

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch07- 深度探秘搜索技术之基于term+bool实现的multiword搜索底层剖析

20190806092132811.jpg


概述


继续跟中华石杉老师学习ES,第七篇

课程地址: https://www.roncoo.com/view/55


普通match转换为term+should


上一篇博文中我们 使用了 搜索标题中包含java或elasticsearch的blog 这个例子

GET /forum/article/_search
{
  "query": {
    "match": {
      "title": "java elasticsearch"
    }
  }
}


我们通过分词器查看,可以知道 es是把 java和elasticsearch放到了倒排索引中,

那es是如何查询的呢? 我们通过 profile

GET /forum/article/_search
{
  "profile": "true", 
  "query": {
    "match": {
      "title": "java elasticsearch"
    }
  }
}

20190604002232988.png

或者kibana提供的

20190604002046237.png

使用诸如上面的match query进行多值搜索的时候,es会在底层自动将这个match query转换为bool的语法 . bool should,指定多个搜索词,同时使用term query

等同于

GET /forum/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "term": {
            "title": "java"
          }
        },
        {
          "term": {
            "title": "elasticsearch"
          }
        }
      ]
    }
  }
}


and match转换为term+must

搜索标题中包含java和elasticsearch的blog 中的

GET /forum/_search
{
  "query": {
    "match": {
      "title": {
        "query": "java elasticsearch",
        "operator": "and"
      }
    }
  }
}

and match转换为term+must

等同于

GET /forum/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "title": "java"
          }
        },
        {
          "term": {
            "title": "elasticsearch"
          }
        }
      ]
    }
  }
}


minimum_should_match如何转换

搜索包含java,elasticsearch,spark,hadoop,4个关键字中,至少3个的blog


GET /forum/_search
{
  "query": {
    "match": {
      "title": {
        "query": "java elasticsearch hadoop spark",
        "minimum_should_match": 3
      }
    }
  }
}

等同于

GET /forum/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "term": {
            "title": "java"
          }
        },
        {
          "term": {
            "title": "elasticsearch"
          }
        },
        {
          "term": {
            "title": "hadoop"
          }
        },
        {
          "term": {
            "title": "spark"
          }
        }
      ],
      "minimum_should_match": 3
    }
  }
}


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
20天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
139 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
6天前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
|
6天前
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
|
1月前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
138 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
17天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
|
21天前
|
存储 运维 监控
Elasticsearch Serverless高性价比智能时序分析关键技术解读
本篇演讲由阿里云1s团队的贾新寓讲解,主题为高性价比、智能日志更新关键技术。内容分为四部分:回顾日志场景痛点、介绍四大关键能力(开箱即用、高性能低成本、按量付费、智能调度免运维)、解读关键技术(如读写分离架构、ES内核优化等),并演示如何快速接入Serverless产品。通过这些技术,显著提升性能、降低成本,帮助用户实现高效日志管理。
|
1月前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
107 0
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
86 5
|
3月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
349 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
4月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo