带你读《云原生机密计算最佳实践白皮书》——部署TensorFlow Serving在线推理服务(2)

简介: 带你读《云原生机密计算最佳实践白皮书》——部署TensorFlow Serving在线推理服务(2)

《云原生机密计算最佳实践白皮书》——07解决方案——Intel Confidential Computing Zoo: Intel机密计算开源解决方案——部署TensorFlow Serving在线推理服务(1) https://developer.aliyun.com/article/1230820?groupCode=aliyun_linux



步骤一:部署客户端

本实践运行的环境信息参考:

• 规格:加密内存≥8G

• 镜像: Ubuntu20.04

• 公网IP

• 安装SGX软件栈

1、环境配置

安装所需的mesa-libGL软件包。

sudo pip3 install --upgrade pip 
sudo pip install multidict
sudo yum install mesa-libGL

2、下载软件包

下载本实践所用的TensorFlow Serving脚本代码并安装所需的argparse、aiohttp、tensorflflow等软件包。

git clone https://github.com/intel/confifidential-computing-zoo.git
cd confifidential-computing-zoo/cczoo/tensorflflow-serving-cluster/ tensorflflow-serving/docker
/client/
pip3 install -r ./requirements.txt

3、下载模型

./download_model.sh

下载训练好的模型文件将会存放在创建的 models/resnet50-v15-fp32 目录下。

4、模型格式转换

为了兼容TensorFlow Serving,需要对训练好的模型文件进行格式转换。

python3 ./model_graph_to_saved_model.py --import_path `pwd -P`/models/res
net50-v15-fp32/resnet50-v15-fp32.pb --export_dir `pwd -P`/models/resnet50-v15-fp32 
--model_version 1 --inputs input --outputs predict

转换好的模型文件将会存放在models/resnet50-v15-fp32/1/saved_model.pb。

5、创建gRPC TLS证书

本实践选择 gRPC TLS 建立客户端和TensorFlow Serving之间的通信连接,并设置 TensorFlow Serving域名来创建单向 TLS Keys 和证书,用来建立安全通信通道。该脚本将会创建 ssl_confifigure 文件夹,里面包含server和client相应的证书。

service_domain_name=grpc.tf-serving.service.com
client_domain_name=client.tf-serving.service.com
./generate_twoway_ssl_confifig.sh ${service_domain_name} ${client_domain_name}

6、创建加密模型

mkdir plaintext/
mv models/resnet50-v15-fp32/1/saved_model.pb plaintext/
LD_LIBRARY_PATH=./libs ./gramine-sgx-pf-crypt encrypt -w fifiles/wrap-key -i plaintext/saved_
model.pb -o models/resnet50-v15-fp32/1/saved_model.pb

7、启动密钥验证服务。

本实践使用Gramine提供的secret_prov_server_dcap作为远端SGX Enclave Quote认证服务,底层依赖调用SGX DCAP提供的Quote相关的认证库,该认证服务会向阿里云PCCS获取Quote认证相关的数据,比如TCB相

关信息以及CRL信息等。

SGX Enclave Quote验证成功后,会将当前目录下存放的密钥fifiles/wrap-key发送到远端应用。这里远端应用为vSGX环境中的Gramine,Gramine拿到wrap-key中的密钥后,便会对加密的模型和TLS配置文件进行解密。

• a. 切换到secrec_prov_server目录

./download_model.sh

• b. 使用密钥验证服务镜像

I) 下载密钥验证服务镜像

sudo docker pull intelcczoo/tensorflflow_serving:anolis_secret_prov_server_latest

II) 根据脚本编译镜像

sudo ./build_secret_prov_image.sh

• c. 获取secret_prov_server镜像ID

sudo docker images

• d. 启动密钥验证服务

sudo ./run_secret_prov.sh -i secret_prov_image_id -a pccs.service.com:ip_addr

服务启动后便会在后台运行等待远程认证访问。当接收到远端认证后,认证通过会将密钥发送回远端。

• e. 查看secret_prov_server容器IP地址

sudo docker ps -a #查看secret_prov_server镜像ID
sudo docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' <secret_prov_
server_container_id> 
#<secret_prov_server_container_id>需修改为实际的secret_prov_container_id



《云原生机密计算最佳实践白皮书》——07解决方案——Intel Confidential Computing Zoo: Intel机密计算开源解决方案——部署TensorFlow Serving在线推理服务(3) https://developer.aliyun.com/article/1230817?groupCode=aliyun_linux

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
3月前
|
运维 Cloud Native 云计算
云原生技术:探索未来计算的无限可能
【10月更文挑战第8天】 云原生技术,作为云计算领域的一次革新性突破,正引领着企业数字化转型的新浪潮。它不仅重塑了应用的构建、部署和运行方式,还通过极致的弹性、敏捷性和可扩展性,解锁了未来计算的无限潜力。本文将深入浅出地解析云原生技术的核心理念、关键技术组件及其在不同行业中的实际应用案例,展现其如何赋能业务创新,加速企业的云化之旅。
71 7
|
19天前
|
运维 Cloud Native Serverless
Serverless Argo Workflows大规模计算工作流平台荣获信通院“云原生技术创新标杆案例”
2024年12月24日,阿里云Serverless Argo Workflows大规模计算工作流平台荣获由中国信息通信研究院颁发的「云原生技术创新案例」奖。
|
20天前
|
运维 监控 Cloud Native
云原生之运维监控实践:使用 taosKeeper 与 TDinsight 实现对 时序数据库TDengine 服务的监测告警
在数字化转型的过程中,监控与告警功能的优化对保障系统的稳定运行至关重要。本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品之一,详细介绍了如何利用 TDengine、taosKeeper 和 TDinsight 实现对 TDengine 服务的状态监控与告警功能。作者通过容器化安装 TDengine 和 Grafana,演示了如何配置 Grafana 数据源、导入 TDinsight 仪表板、以及如何设置告警规则和通知策略。欢迎大家阅读。
46 0
|
2月前
|
Kubernetes Cloud Native Docker
云原生之旅:从传统架构到容器化服务的演变
随着技术的快速发展,云计算已经从简单的虚拟化服务演进到了更加灵活和高效的云原生时代。本文将带你了解云原生的概念、优势以及如何通过容器化技术实现应用的快速部署和扩展。我们将以一个简单的Python Web应用为例,展示如何利用Docker容器进行打包和部署,进而探索Kubernetes如何管理这些容器,确保服务的高可用性和弹性伸缩。
|
2月前
|
敏捷开发 Kubernetes Cloud Native
阿里云云原生技术为企业提供了一套高效、灵活的解决方案,支持跨云部署与管理
在多云环境中,阿里云云原生技术为企业提供了一套高效、灵活的解决方案,支持跨云部署与管理。通过容器化、服务网格等技术,实现了应用的一致性与可移植性,简化了多云环境下的资源管理和服务治理,帮助企业应对复杂的云环境挑战,加速数字化转型。
66 5
|
2月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
67 3
|
2月前
|
消息中间件 监控 Cloud Native
云原生架构下的数据一致性挑战与解决方案####
在数字化转型加速的今天,云原生架构以其轻量级、弹性伸缩和高可用性成为企业IT架构的首选。然而,在享受其带来的灵活性的同时,数据一致性问题成为了不可忽视的挑战。本文探讨了云原生环境中数据一致性的复杂性,分析了导致数据不一致的根本原因,并提出了几种有效的解决策略,旨在为开发者和企业提供实践指南,确保在动态变化的云环境中保持数据的完整性和准确性。 ####
|
2月前
|
Kubernetes Cloud Native Ubuntu
庆祝 .NET 9 正式版发布与 Dapr 从 CNCF 毕业:构建高效云原生应用的最佳实践
2024年11月13日,.NET 9 正式版发布,Dapr 从 CNCF 毕业,标志着云原生技术的成熟。本文介绍如何使用 .NET 9 Aspire、Dapr 1.14.4、Kubernetes 1.31.0/Containerd 1.7.14、Ubuntu Server 24.04 LTS 和 Podman 5.3.0-rc3 构建高效、可靠的云原生应用。涵盖环境准备、应用开发、Dapr 集成、容器化和 Kubernetes 部署等内容。
91 5
|
3月前
|
人工智能 Cloud Native 安全
从云原生到 AI 原生,网关的发展趋势和最佳实践
本文整理自阿里云智能集团资深技术专家,云原生产品线中间件负责人谢吉宝(唐三)在云栖大会的精彩分享。讲师深入浅出的分享了软件架构演进过程中,网关所扮演的各类角色,AI 应用的流量新特征对软件架构和网关所提出的新诉求,以及基于阿里自身实践所带来的开源贡献和商业能力。
311 13
|
3月前
|
监控 Cloud Native 持续交付
云原生架构下微服务的最佳实践与挑战####
【10月更文挑战第20天】 本文深入探讨了云原生架构在现代软件开发中的应用,特别是针对微服务设计模式的最优实践与面临的主要挑战。通过分析容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,阐述了如何高效构建、部署及运维微服务系统。同时,文章也指出了在云原生转型过程中常见的难题,如服务间的复杂通信、安全性问题以及监控与可观测性的实现,为开发者和企业提供了宝贵的策略指导和解决方案建议。 ####
63 5

热门文章

最新文章