3.6万亿token、3400亿参数,谷歌大模型PaLM 2细节遭曝光

简介: 3.6万亿token、3400亿参数,谷歌大模型PaLM 2细节遭曝光
谷歌内部文件又泄露了,这次是谷歌新一代大模型 PaLM 2 的训练细节: 训练数据量是前代的近 5 倍、参数量是前代的三分之二左右。

上周四,在 2023 谷歌 I/O 大会上,谷歌 CEO 皮查伊宣布推出对标 GPT-4 的大模型 PaLM 2,并正式发布预览版本,改进了数学、代码、推理、多语言翻译和自然语言生成能力。

PaLM 2 模型提供了不同尺寸规模的四个版本,从小到大依次为 Gecko、Otter、Bison 和 Unicorn,更易于针对各种用例进行部署。其中轻量级的 Gecko 模型可以在移动设备上运行,速度非常快,不联网也能在设备上运行出色的交互式应用程序。
不过会上,谷歌并没有给出有关 PaLM 2 的具体技术细节,只说明了它是构建在谷歌最新 JAX 和 TPU v4 之上。

昨日,据外媒 CNBC 看到的内部文件称,PaLM 2 是在 3.6 万亿个 token 上训练。作为对比,上代 PaLM 接受了 7800 亿 token 的训练。

此外,谷歌之前表示 PaLM 2 比以前的 LLM 规模更小,这意味着在完成更复杂任务的同时变得更加高效。这一点也在内部文件中得到了验证,PaLM 2 的训练参数量为 3400 亿,远小于 PaLM 的 5400 亿。

PaLM 2 的训练 token 和参数量与其他家的 LLM 相比如何呢?作为对比,Meta 在 2 月发布的 LLaMA 接受了 1.4 万亿 token 的训练。OpenAI 1750 亿参数的 GPT-3 是在 3000 亿 token 上训练的。

虽然谷歌一直渴望展示其 AI 技术的强大能力以及如何嵌入到搜索、电子邮件、文件处理和电子表格中,但也不愿公布其训练数据的大小或其他细节。其实这样做的不只谷歌一家,OpenAI 也缄口不言其最新多模态大模型 GPT-4 的细节。他们都表示不披露细节是源于业务的竞争属性。

不过,随着 AI 军备竞赛的持续升温,研究界越来越要求提高透明度。并且在前段时间泄露的一份谷歌内部文件中,谷歌内部研究人员表达了这样一种观点:虽然表面看起来 OpenAI 和谷歌在 AI 大模型上你追我赶,但真正的赢家未必会从这两家中产生,因为第三方力量「开源」正在悄然崛起。

目前,这份内部文件的真实性尚未得到验证,谷歌也并未对相关内容置评。

网友评论

在官宣 PaLM 2 之初,就有网友根据 Chinchilla 定律预测其参数量,ta 预测 PaLM 2 模型家族的参数结果为 80B / 90B / 100B 不等,和这次爆料的 340B 还是差距很大的。

还有人对 PaLM 2 的训练成本进行了一波预测,根据历代大模型的发展来看,这位网友表示,打造 PaLM 2 需要耗资 1 亿美元。

PaLM 2 参数都泄密了,可以试着推测 Bard 了,这位网友表示:

随着 PaLM 2 token 数的泄露,网友不禁疑问,在 AGI 到来之前,多少 token 才能迎来一次大转折?

参考链接:https://www.cnbc.com/2023/05/16/googles-palm-2-uses-nearly-five-times-more-text-data-than-predecessor.html

相关文章
|
5月前
|
人工智能 IDE 开发工具
CodeGPT AI代码狂潮来袭!个人完全免费使用谷歌Gemini大模型 超越DeepSeek几乎是地表最强
CodeGPT是一款基于AI的编程辅助插件,支持代码生成、优化、错误分析和单元测试,兼容多种大模型如Gemini 2.0和Qwen2.5 Coder。免费开放,适配PyCharm等IDE,助力开发者提升效率,新手友好,老手提效利器。(238字)
2618 1
CodeGPT AI代码狂潮来袭!个人完全免费使用谷歌Gemini大模型 超越DeepSeek几乎是地表最强
|
4月前
|
存储 数据采集 自然语言处理
56_大模型微调:全参数与参数高效方法对比
随着大型语言模型(LLM)规模的不断增长,从数百亿到数千亿参数,传统的全参数微调方法面临着计算资源消耗巨大、训练效率低下等挑战。2025年,大模型微调技术已经从早期的全参数微调发展到如今以LoRA、QLoRA为代表的参数高效微调方法,以及多种技术融合的复杂策略。本文将深入对比全参数微调和参数高效微调的技术原理、适用场景、性能表现和工程实践,为研究者和工程师提供全面的技术参考。
|
10月前
|
机器学习/深度学习 人工智能 算法
小米7B参数推理大模型首次开源!Xiaomi MiMo:数学代码双杀,超越32B巨头
小米开源的MiMo推理大模型通过联动预训练与强化学习算法,在7B参数规模下实现数学推理与代码生成能力的突破性提升,技术报告显示其性能超越部分32B级模型。
1511 74
小米7B参数推理大模型首次开源!Xiaomi MiMo:数学代码双杀,超越32B巨头
|
6月前
|
人工智能 JSON API
Kimi K2,开源万亿参数大模型
Kimi K2是由月之暗面推出的全球首个开源万亿参数MoE模型,具备强大的工具调用、复杂推理与自主决策能力。该模型可通过MaaS平台快速调用,无需编码,最快5分钟即可部署,体验成本低至0元。通过Cherry Studio客户端,用户可便捷配置API密钥并调用模型,同时支持MCP功能,实现网页内容抓取等扩展能力。操作简单、功能强大,适合企业与开发者高效应用。
|
7月前
|
机器学习/深度学习 负载均衡 C++
MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。
515 0
MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
|
7月前
|
数据采集 编解码 人工智能
Gemma 3n正式版开源:谷歌全新端侧多模态大模型,2GB 内存就能跑,重点提升编码和推理能力!
6月底,Google正式开源发布了全新端侧多模态大模型 Gemma 3n!相较此前的预览版,最新的 Gemma 3n 完整版进一步提升性能表现,支持在 2GB 内存的硬件上本地运行,重点提升了编码和推理方面的能力。
896 1

热门文章

最新文章