让大模型像学生一样解数学题,正确率提升14%,微软的MathPrompter了解一下

简介: 让大模型像学生一样解数学题,正确率提升14%,微软的MathPrompter了解一下


算不对就用各种方法多算几遍,中间步骤也检查一下,原来这套教学方法对大模型也管用。


大型语言模型在解决算术推理任务时性能欠佳,经常提供错误的答案。与自然语言理解不同,数学问题通常只有一个正确答案,这使得生成准确解决方案的任务对大型语言模型来说更具挑战性。为了在一定程度上解决这类问题,来自微软的研究者从人类解决数学问题的方式中获得灵感,将其分解为更简单的多步骤程序,并在每个步骤中利用多种方式来验证他们的方法。

论文链接:https://arxiv.org/pdf/2303.05398.pdf具体来说,给定一个问题 Q,然后执行以下几个步骤:

1、生成代数模板:研究者首先生成其对应的代数表达式 Q_t,用变量替换数字项。

2、Math-prompt:然后,他们向大型语言模型提供多个 prompt P,这些 prompt 可以以不同的方式分析解决 Q_t。例如,P 可以是「推导出一个代数表达式」或「编写一个 Python 函数」等等。按照这个程序,我们最终会得到 P 的表达式,它根据 Q_t 的变量解析地求解 Q_t。

3、计算验证:通过给 Q_t 变量分配多个随机值来评估 P 的解析解。

4、统计学意义:如果 P 的解析函数的解在 N∼5 个不同的变量选择上处于「一致」状态,那么将 Q 中的原始值替换为最终解。如果不「一致」,重复步骤(II)、(III)和(IV)。


这篇论文提出的方法 ——MathPrompter,使用了 175B 参数量的大型语言模型 ——GPT3 DaVinci  completion engine,能够将模型在 MultiArith 数据集上的准确率从 78.7% 提升到 92.5%。方法由于大型语言模型是生成模型,要确保生成的答案是准确的就变得非常棘手,特别是对于数学推理任务。研究者从学生解决算术问题的过程中获得启发。他们缩小了学生为验证他们的解决方案而采取的几个步骤,即:

  • 与已知结果相一致。通过将解决方案与已知的结果进行比较,可以评估其准确性并进行必要的调整。当问题是一个有既定解的标准问题时,这一点尤其有用。
  • 多重验证。从多个角度处理问题并比较结果有助于确认解的有效性,确保其既合理又准确;
  • 交叉检查。解决问题的过程与最终的答案一样必要。核实过程中的中间步骤的正确性,可以清楚地了解解的背后的思维过程。
  • 计算验证。利用计算器或电脑进行算术计算可以帮助验证最终答案的准确性。


MathPrompter本文提出的方法 ——MathPrompter,就是试图将这种思维过程的一部分转移到大型语言模型答案生成过程中。图 1 概述了 MathPrompter 解决一个数学推理问题所遵循的步骤。研究者使用最先进的 GPT-3 DaVinci completion engine 来完成问答任务。他们使用 MultiArith 数据集中的以下问题「Q」来演示 MathPrompter 的解题过程:

问: 在一家餐厅,每份成人餐的价格是 5 美元,儿童免费用餐。 如果有一个 15 人的团体进来,其中 8 个是儿童,那么这个团体要花多少钱吃饭?


第一步:生成代数模板。首先将问题转化为代数形式,通过使用键值映射将数字替换为变量。在这个例子中,修改后的问题「Q_t」变成了:

Q_t:在一家餐厅,每份成人餐的价格是 A 美元,儿童免费用餐。如果有一个 B 人的团体进来,其中 C 个是儿童,那么这个团体要花多少钱吃饭? 映射:{A:5, B:15, C:8}


第二步:Math-prompt。受到上面提到的多重验证和交叉检查思维过程的启发,研究者使用两种不同的方法生成 Q_t 的解析解,即代数方式和 Python 方式。他们给大型语言模型以下 prompt,以便为 Q_t 生成额外的上下文:

代数 prompt:写一个数学方程并生成以 “answer =” 格式开头的答案。

Python prompt:编写一个返回答案的 Python 函数。


大型语言模型在回应上述 prompt 时产生了以下输出表达式:

上面生成的解析解给用户提供了一些信息,让他们了解大型语言模型的「中间思维过程」。加入额外的 prompt 将提高结果的准确性和一致性。这将反过来提高 MathPrompter 生成更精确和有效的解的能力。第三步:计算验证。研究者使用 Q_t 中输入变量的多个随机键值映射来评估上一步生成的表达式。为了评估这些表达式,研究者使用了 Python 的 eval () 方法。他们比较输出结果,看能否在答案中找到一个共识。这也提高了他们对答案正确性、可靠性的信心。一旦表达式在输出上达成一致,他们就使用输入 Q 中的变量值来计算最终的答案,如下所示:

第四步是统计重要性。为了确保在各种表达式的输出中都能达成共识,研究者在实验中对第二、三步重复 N∼5 次,并报告观察到的最频繁的答案值。实验结果表 1 比较了 MathPrompter 与基线模型的性能,显示了基于 few-shot 和 zero-shot 学习的方法的效果。结果显示,MathPrompter 可以达到 92.5% 的准确率,远远高于其他 SOTA 模型。表 2 列出了一组样本问题及其各自的输出、中间步骤和由 MathPrompter 和 SOTA 模型产生的最终答案。该表显示了 Kojima et al. (2022) 技术的不足之处,以及可以用 MathPrompter 补救的地方,而 MathPrompter 就是为了解决这些问题而设计的。例如,生成答案的某个步骤有时会出错,这可以通过多次运行模型并报告共识结果来避免。此外,Kojima et al. (2022) 的推理步骤可能过于冗长,但 Pythonic 或 Algebraic 方法可以解决这个问题,通常需要较少的 token。此外,在推理步骤正确的情况下,最终的计算结果可能不正确。MathPrompter 通过使用 Python 的 eval () 方法函数解决这个问题。

更多细节请参见原论文。

相关文章
|
9月前
|
人工智能 编解码 芯片
告别低效沟通|让技术提问不再头疼-这套高效AI提问模板来帮你
不会向ai提问,不知道怎么提问的 可以看看
20967 1
告别低效沟通|让技术提问不再头疼-这套高效AI提问模板来帮你
|
5月前
|
存储 SQL 人工智能
Windows Server 2025 中文版、英文版下载 (2025 年 9 月更新)
Windows Server 2025 中文版、英文版下载 (2025 年 9 月更新)
2519 3
Windows Server 2025 中文版、英文版下载 (2025 年 9 月更新)
|
6月前
|
SQL 人工智能 Java
用 LangChain4j+Ollama 打造 Text-to-SQL AI Agent,数据库想问就问
本文介绍了如何利用AI技术简化SQL查询操作,让不懂技术的用户也能轻松从数据库中获取信息。通过本地部署PostgreSQL数据库和Ollama模型,结合Java代码,实现将自然语言问题自动转换为SQL查询,并将结果以易懂的方式呈现。整个流程简单直观,适合初学者动手实践,同时也展示了AI在数据查询中的潜力与局限。
783 8
|
12月前
|
人工智能 数据可视化 架构师
三句话生成 P5.js 粒子特效代码,人人都可以做交互式数字艺术
短短几分钟,两个完全不懂P5.js的人类,和通义灵码AI程序员一起,共同完成了有真实物理引擎和碰撞检测的3D仿真动画。人类扮演的角色更像产品经理和架构师,提出开发需求和迭代修改方案,而AI的作用更像码农,任劳任怨,熟练用各种编程语言完成技术底层的脏活累活。这只是AI编程的冰山一角,未来,每一个艺术家都能快速做出自己的创意原型,每一个数学老师都能轻松做出自己的教学动画。
|
11月前
|
机器学习/深度学习 数据采集 人工智能
DeepSeek R1 最新全面综述:R1 为什么能让 LLM 像人一样思考?
DeepSeek R1 最新全面综述:R1 为什么能让 LLM 像人一样思考?
513 0
|
人工智能 自然语言处理 算法
打破AI信息差:2024年20款好用的人工智能工具大盘点
本文带你了解20款值得一试的AI工具,帮助你在内容创作、图像设计、音频视频编辑等领域提高效率、激发创意。
2025 1
打破AI信息差:2024年20款好用的人工智能工具大盘点
|
Web App开发 Linux iOS开发
Chrome浏览器如何导出所有书签并导入书签
【11月更文挑战第4天】本文介绍了如何在 Chrome 浏览器中导出和导入书签。导出时,打开书签管理器,点击“整理”按钮选择“导出书签”,保存为 HTML 文件。导入时,同样打开书签管理器,点击“整理”按钮选择“导入书签”,选择之前导出的 HTML 文件即可。其他主流浏览器也支持导入这种格式的书签文件。
10960 2
|
人工智能 搜索推荐 API
开源2.0|从事视频剪辑的“熬者们”,自动化剪辑工具 FunClip请收好
开源2.0|从事视频剪辑的“熬者们”,自动化剪辑工具 FunClip请收好
开源2.0|从事视频剪辑的“熬者们”,自动化剪辑工具 FunClip请收好
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习+面经】Transformer 网络学习笔记
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
826 2

热门文章

最新文章