ICLR 2023 Oral | Batch Norm层等暴露TTA短板,开放环境下解决方案来了(2)

简介: ICLR 2023 Oral | Batch Norm层等暴露TTA短板,开放环境下解决方案来了

2. 锐度敏感且可靠的测试时熵最小化方法

为了缓解上述模型退化问题,本文提出了锐度敏感且可靠的测试时熵最小化方法 (Sharpness-aware and Reliable Entropy Minimization Method, SAR)。其从两个方面缓解这一问题:1)可靠熵最小化从模型自适应更新中移除部分产生较大 / 噪声梯度的样本;2)模型锐度优化使得模型对剩余样本中所产生的某些噪声梯度不敏感。具体细节阐述如下:

可靠熵最小化:基于 Entropy 建立梯度选择的替代判断指标,将高熵样本(包含图 6 (d) 中区域 1 和 2 的样本)排除在模型自适应之外不参与模型更新:


其中 x 表示测试样本,Θ 表示模型参数,表示指示函数,表示样本预测结果的熵,为超参数。仅当 时样本才会参与反向传播计算。

锐度敏感的熵优化:通过可靠样本选择机制过滤后的样本中,无法避免仍含有图 6 (d) 区域 4 中的样本,这些样本可能产生噪声 / 较大梯度继续干扰模型。为此,本文考虑将模型优化至一个 flat minimum,使其能够对噪声梯度带来的模型更新不敏感,即不影响其原始模型性能,优化目标为:


上述目标的最终梯度更新形式如下:


其中 受启发于 SAM [4] 通过一阶泰勒展开近似求解得到,具体细节可参见本论文原文与代码。

至此,本文的总体优化目标为:


此外,为了防止极端条件下上述方案仍可能失败的情况,进一步引入了一个模型复原策略:通过移动监测模型是否出现退化崩溃,决定在必要时刻对模型更新参数进行原始值恢复。

实验评估

在动态开放场景下的性能对比

SAR 基于上述三种动态开放场景,即 a)混合分布偏移、b)单样本适应和 c)在线不平衡类别分布偏移,在 ImageNet-C 数据集上进行实验验证,结果如表 1, 2, 3 所示。SAR 在三种场景中均取得显著效果,特别是在场景 b)和 c)中,SAR 以 VitBase 作为基础模型,准确率超过当前 SOTA 方法 EATA 接近 10%。

表 1 SAR 与现有方法在 ImageNet-C 的 15 种损坏类型混合场景下性能对比,对应动态场景 (a);以及和现有方法的效率对比

表 2 SAR 与现有方法在 ImageNet-C 上单样本适应场景中的性能对比,对应动态场景 (b)

表 3 SAR 与现有方法在 ImageNet-C 上在线非均衡类别分布偏移场景中性能对比,对应动态场景(c)

消融实验

与梯度裁剪方法的对比:梯度裁剪避免大梯度影响模型更新(甚至导致坍塌)的一种简单且直接的方法。此处与梯度裁剪的两个变种(即:by value or by norm)进行对比。如下图所示,梯度裁剪对于梯度裁剪阈值 δ 的选取很敏感,较小的 δ 与模型不更新的结果相当,较大的 δ 又难以避免模型坍塌。相反,SAR 不需要繁杂的超参数筛选过程且性能显著优于梯度裁剪。

图 7 与梯度裁剪方法的在 ImageNet-C(shot nosise, level 5) 上在线不平衡标签分布偏移场景中的性能对比。其中准确率是基于所有之前的测试样本在线计算得出

不同模块对算法性能的影响:如下表所示,SAR 的不同模块协同作用,有效提升了动态开放场景下测试时模型自适应稳定性。

表 4 SAR 在 ImageNet-C (level 5) 上在线不平衡标签分布偏移场景下的消融实验

Loss 表面的锐度可视化:通过在模型权重增加扰动对损失函数可视化的结果如下图所示。其中,SAR 相较于 Tent 在最低损失等高线内的区域(深蓝色区域)更大,表明 SAR 获得的解更加平坦,对于噪声 / 较大梯度更加鲁棒,抗干扰能力更强。

图 8 熵损失表面可视化

结语

本文致力于解决在动态开放场景中模型在线测试时自适应不稳定的难题。为此,本文首先从统一的角度对已有方法在实际动态场景失效的原因进行分析,并设计完备的实验对其进行深度验证。基于这些分析,本文最终提出锐度敏感且可靠的测试时熵最小化方法,通过抑制某些具有较大梯度 / 噪声测试样本对模型更新的影响,实现了稳定、高效的模型在线测试时自适应。

参考文献

[1] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with self-supervision for generalization under distribution shifts. In International Conference on Machine Learning, pp. 9229–9248, 2020.[2] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time adaptation by entropy minimization. In International Conference on Learning Representations, 2021.[3] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-time model adaptation without forgetting. In International Conference on Machine Learning, pp. 16888–16905, 2022.[4] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. In International Conference on Learning Representations, 2021.[5] Tong Wu, Feiran Jia, Xiangyu Qi, Jiachen T. Wang, Vikash Sehwag, Saeed Mahloujifar, and Prateek Mittal. Uncovering adversarial risks of test-time adaptation. arXiv preprint arXiv:2301.12576, 2023.

相关文章
|
9月前
|
数据采集 监控 API
淘宝淘口令 API 接口全攻略
### 淘口令 API 及相关服务简介 **一、淘口令 API(item_password)** - **功能**:将淘口令转换为商品链接或获取商品信息,支持生成自定义淘口令。 - **申请流程**:注册账号、创建应用、获取凭证、申请权限。 - **调用示例(Python)**:通过签名和请求参数调用接口,生成淘口令。 **二、第三方 API 服务** - **适用场景**:简化开发流程,支持高佣转链、淘口令解析等功能。 - **推荐接口**:万能淘口令生成、淘口令解析真实 URL。
|
10月前
|
机器学习/深度学习 人工智能
NeurIPS 2024:收敛速度最高8倍,准确率提升超30%!华科发布MoE Jetpack框架
在NeurIPS 2024会议上,华中科技大学团队发布了MoE Jetpack框架,旨在解决专家混合(MoE)模型训练中的挑战。该框架通过检查点回收和超球面自适应MoE(SpheroMoE)层两项技术,利用预训练密集模型加速收敛并提高准确性。实验表明,MoE Jetpack在视觉任务上显著提升收敛速度(最高8倍)和准确性(超过30%),为MoE模型的实际应用提供了新动力。尽管存在一些限制,如初始权重依赖密集模型及计算资源需求,但该框架大幅降低了MoE模型的训练成本,提升了其可行性。论文地址:https://arxiv.org/abs/2406.04801。
348 45
|
9月前
|
API 开发者
HarmonyOS:@AnimatableExtend 装饰器自学指南
本文详细介绍了 `@AnimatableExtend` 装饰器的使用方法与应用场景,帮助开发者实现复杂动画效果。从 API Version 10 开始支持的该装饰器,可通过自定义动画属性对不同类型数据进行处理。文章通过改变 Text 组件宽度和实现折线动画两个示例,展示了装饰器的强大功能。同时解析了 `AnimatableArithmetic<T>` 接口的加减乘除及相等判断规则,为非 number 类型数据动画提供解决方案。总结中强调了装饰器的灵活性,鼓励开发者在项目中实践,提升应用动画体验。
208 15
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
SQL Java 数据库连接
spring和Mybatis的各种查询
Spring 和 MyBatis 的结合使得数据访问层的开发变得更加简洁和高效。通过以上各种查询操作的详细讲解,我们可以看到 MyBatis 在处理简单查询、条件查询、分页查询、联合查询和动态 SQL 查询方面的强大功能。熟练掌握这些操作,可以极大提升开发效率和代码质量。
425 3
|
机器学习/深度学习 人工智能 自然语言处理
开源版GPT-4o来了,AI大神Karpathy盛赞!67页技术报告全公开
【10月更文挑战第20天】近日,开源版GPT-4o的发布成为AI领域的焦点。作为GPT系列的最新成员,GPT-4o在性能和多模态数据处理方面实现了显著提升,得到了知名AI专家Andrej Karpathy的高度评价。该模型的开源特性将进一步促进AI研究的进展。
1051 3
|
机器学习/深度学习 PyTorch 算法框架/工具
彻底告别微调噩梦:手把手教你击退灾难性遗忘,让模型记忆永不褪色的秘密武器!
【10月更文挑战第5天】深度学习中,模型微调虽能提升性能,但也常导致灾难性遗忘,即学习新任务时遗忘旧知识。本文介绍几种有效解决方案,重点讲解弹性权重巩固(EWC)方法,通过在损失函数中添加正则项来防止重要权重被更新,保护模型记忆。文中提供了基于PyTorch的代码示例,包括构建神经网络、计算Fisher信息矩阵和带EWC正则化的训练过程。此外,还介绍了其他缓解灾难性遗忘的方法,如LwF、在线记忆回放及多任务学习,以适应不同应用场景。
1599 8
|
关系型数据库 MySQL 数据库
深入浅出MySQL索引优化:提升数据库性能的关键
在这个数据驱动的时代,数据库性能的优劣直接关系到应用的响应速度和用户体验。MySQL作为广泛使用的数据库之一,其索引优化是提升查询性能的关键。本文将带你一探MySQL索引的内部机制,分析索引的类型及其适用场景,并通过实际案例演示如何诊断和优化索引,以实现数据库性能的飞跃。
|
小程序 Java 关系型数据库
微信记账小程序
微信记账小程序
843 0
|
SQL Java 数据库连接
JPA 之 QueryDSL-JPA 使用指南
JPA 之 QueryDSL-JPA 使用指南
1183 0