细数NLP与CV的融合创新:盘点多模态深度学习这几年

简介: 细数NLP与CV的融合创新:盘点多模态深度学习这几年

本文概述了最先进的多模态深度学习研究中使用的各类方法。


近年来,NLP 和 CV 领域在方法上突破不断。不只是单模态模型有所进展,而大规模多模态方法也已经成为非常热门的研究领域。


在最近的一篇论文中,研究者Matthias Aßenmacher回顾梳理了深度学习这两个子领域当前最先进的研究方法,并尝试进行全面的概述。此外,还讨论了将一种模态转换为另一种模态的建模框架(第 3.1 章和第 3.2 章),以及利用一种模态增强另一种模态的表征学习模型(第 3.3 章和第 3.4 章)。研究者引入了侧重同时处理两种模态的架构(第 3.5 章)作为第二部分的尾声。最后,论文还涵盖了其他模态(第 4.1 章和第 4.2 章)以及通用多模态模型(第 4.3 章),这些模型能够在一个统一架构中处理不同模态上的不同任务。一个有趣的应用(「生成艺术」,第 4.4 章)最终成为这篇综述的锦上添花之笔。


论文章节目录如下:多模态深度学习简介人类有五种基本感官:听觉、触觉、嗅觉、味觉和视觉。借由这五种模式,我们得以感知和理解周围的世界。「多模态」则意味着同时利用多种信息渠道的结合来理解周围环境。例如,当蹒跚学步的孩子学习「猫」这个词时,他们会用不同的方式大声说出这个词,指着猫,发出类似「喵喵」的声音。AI 研究人员以人类学习过程为范式,结合不同模态来训练深度学习模型。从表面上看,深度学习算法通过训练神经网络以优化损失函数来优化定义的目标函数。优化,即将损失最小化,通过称为梯度下降的数值优化程序完成。因此,深度学习模型只能处理数字输入,也只能产生数字输出。然而,在多模态任务中,我们经常遇到图片或文本等非结构化数据。所以,关于多模态任务的首要问题是如何用数字表征输入;其次则是如何恰当地组合不同模态。例如,训练深度学习模型来生成一张猫的图片可能就是一个典型的任务。首先,计算机需要理解文本输入「猫」,然后以某种方式将这些信息转换成特定图像。因此,确定输入文本中单词间的上下文关系和输出图像中像素点间的空间关系很有必要。对幼儿来说可能很容易这件事,对于计算机却可能是巨大挑战。二者都必须对「猫」这个词有一定理解,包括这个动物的内涵和外观。当前深度学习领域一种常见方法是生成嵌入,用数字形式将猫表征为某个潜在空间中的向量。为了实现这一点,近年来已经开发出各种方法和算法架构。本文概述了最先进(SOTA)多模态深度学习中使用的各类方法,以克服非结构化数据和不同模态输入组合带来的挑战。章节介绍因为多模态模型通常以文本和图像作为输入或输出,所以第2章着重介绍了自然语言处理(NLP)和计算机视觉(CV)方法。NLP 领域的方法主要在于文本数据处理,而 CV 多进行图像处理。关于 NLP(第 2.1 小节)的一个非常重要的概念叫做词嵌入,几乎是现在所有多模态深度学习架构的重要组成部分。这一概念也为基于Transformer的模型奠定了基础,比如 BERT ,该模型在几个 NLP 任务中都取得了重大进展。特别是Transformer的自注意力机制彻底改变了 NLP 模型,这也是为什么大多数 NLP 模型将Transformer作为核心。在计算机视觉(第 2.2 小节)中,作者介绍里不同的网络架构,即 ResNet、EfficientNet、SimCLR和BYOL。在这两个领域,比较不同方法及其在富有挑战性的基准上表现如何是非常有意义的。因此,第 2 章末 2.3 小节对 CV 和 NLP 的不同数据集、预训练任务和基准进行了全面概括。第3章侧重于不同的多模态架构,涵盖文本和图像的多种组合方式,提出的模型相组合并推进了 NLP 和 CV 不同方法的研究。首先介绍了 Img2Text 任务(第 3.1 小节)、用于目标识别的 Microsoft COCO 数据集和用于图像捕获的Meshed-Memory Transformer。另外,研究人员开发了基于短文本 prompt 生成图片的方法(第 3.2 小节)。完成这项任务的第一个模型是生成对抗网络(GAN)和变分自编码器(VAE)。近年来,这些方法不断改进,今天的 SOTA Transformer架构和文本引导的扩散模型如 DALL-E和 GLIDE都取得了显著成果。另一个有趣的问题是,如何利用图像来支持语言模型(第 3.3 小节)。可通过顺序嵌入、更高级的实际嵌入或直接在Transformer内部实现。也可以看一下支持文本的 CV 模型,如 CLIP、ALIGN和 Florence(第 3.4 小节)。基础模型的使用意味着模型重用(例如 DALL-E 2 中的 CLIP),以及文本与图像连接的对比损失。此外,zero-shot 使得通过微调就可毫不费力对新的和不可见的数据进行分类。特别是用于图像分类和生成的开源架构 CLIP去年颇受关注。第3章末介绍了同时处理文本和图像的一些其他架构(第 3.5 小节)。例如,Data2Sec 用相同的学习方法处理语音、视觉和语言,并尝试以此找到一种通用方法,能在一个架构中处理不同模态。此外,VilBert扩展了流行的 BERT 架构,通过实现共同注意力来处理图像和文本输入。这种方法也用于谷歌的 Deepmind Flamingo。此外,Flamingo 的目标是通过少样本学习和冻结预训练的视觉和语言模型,用单个视觉语言模型处理多个任务。最后一章(第 4 章)介绍了能够处理文本和图像以外模态的方法,例如视频、语音或表格数据。总体目标是探索通用的多模态架构,并非为模态而模态,而是为从容应对挑战。因此还需处理多模态融合和对齐的问题,决定要使用联合表征还是协调表征(第 4.1 小节)。此外,还将更详细地介绍如何精准组合结构化数据和非结构化数据(第 4.2 小节)。作者还提出了近年来形成的不同融合策略,本文通过生存分析和经济学中的两个用例加以说明。除此之外,另一个有趣的研究问题是,如何在一个所谓的多用途模型(第 4.3 小节)中处理不同任务,就像谷歌研究人员在其「Pathway」模型中创建的那样。最后,文章会展示多模态深度学习在艺术场景中的一个典型应用,使用 DALL-E等图像生成模型来创建生成艺术领域的艺术作品(第 4.4 小节)。了解更多内容,请参考原论文。

相关文章
|
9月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。
571 6
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
|
4月前
|
存储 监控 算法
1688 图片搜索逆向实战:CLIP 多模态融合与特征向量落地方案
本文分享基于CLIP模型与逆向工程实现1688图片搜同款的实战方案。通过抓包分析破解接口签名,结合CLIP多模态特征提取与Faiss向量检索,提升搜索准确率至91%,单次响应低于80ms,日均选品效率提升4倍,全程合规可复现。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
88_多模态提示:图像与文本融合
在人工智能领域的快速发展中,多模态融合已成为突破单一模态限制、实现更全面智能理解的关键技术方向。人类理解世界的方式天然是多模态的——我们同时通过视觉、听觉、语言等多种感官获取信息并进行综合分析。例如,在餐厅点餐时,我们会同时处理菜单上的图片、服务员的介绍和菜品的文字描述,最终做出决策。这种自然的多模态信息整合能力,正是人工智能系统长期以来努力追求的目标。
|
7月前
|
机器学习/深度学习 人工智能 自动驾驶
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。
AI Agent多模态融合策略研究与实证应用
|
6月前
|
传感器 机器学习/深度学习 监控
【图像融合】差异的高斯:一种简单有效的通用图像融合方法[用于融合红外和可见光图像、多焦点图像、多模态医学图像和多曝光图像](Matlab代码实现)
【图像融合】差异的高斯:一种简单有效的通用图像融合方法[用于融合红外和可见光图像、多焦点图像、多模态医学图像和多曝光图像](Matlab代码实现)
266 0
|
8月前
|
机器学习/深度学习 资源调度 算法
Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
本文详细介绍了在2023年Kaggle "Global Multimodal Demand Forecasting Challenge"中夺冠的**CGO-Transformer-GRU**方案。该方案通过融合协方差引导优化(CGO)、注意力机制和时序建模技术,解决了多模态数据预测中的核心挑战,包括异构数据对齐、模态动态变化及长短期依赖建模。方案创新性地提出了动态门控机制、混合架构和梯度平衡算法,并在公开数据集TMU-MDFD上取得了RMSE 7.83的优异成绩,领先亚军12.6%。
422 1
|
7月前
|
JSON 算法 安全
1688图片搜索逆向工程与多模态搜索融合实践——基于CLIP模型的特征向
本文介绍了通过逆向工程分析实现图片搜索的技术方案,包括请求特征捕获、签名算法破解及多模态搜索的实现。利用CLIP模型提取图像特征,并结合Faiss优化相似度计算,提升搜索效率。最后提供完整调用示例,模拟实现非官方API的图片搜索功能。
|
8月前
|
传感器 人工智能 搜索推荐
人机融合智能 | 可穿戴计算设备的多模态交互
本文介绍了可穿戴计算设备的多模态交互技术,阐述了以人为中心的设计目标与原则。内容涵盖设备的历史发展、特点及分类,并重点分析手指触控、手部动作、头部和眼睛动作等交互模态。同时探讨支持这些交互的传感器种类与原理,以及未来挑战。通过十个设计原则,强调自然高效、个性化、低认知负荷及隐私保护的重要性,为可穿戴技术的设计提供指导。
516 0
|
机器学习/深度学习 存储 自然语言处理
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)

热门文章

最新文章