无需人工标注,自生成指令框架打破ChatGPT等LLM的成本瓶颈

简介: 无需人工标注,自生成指令框架打破ChatGPT等LLM的成本瓶颈


当前,大型语言模型的性能已经达到了很高的水平,除了进一步挖掘其潜力,我们还应该关注到模型背后的人工标注成本。

ChatGPT 是今年年底 AI 圈的新晋顶流,人们惊叹于它强大的问答语言能力和掌握的编程知识。但越是强大的模型,其背后的技术要求也就越高。


ChatGPT 是在 GPT 3.5 系列模型的基础上,引入「人工标注数据 + 强化学习」(RLHF)来不断微调预训练语言模型,旨在让大型语言模型(LLM)学会理解人类的命令,并学会根据给定的 prompt 给出最优的答案。


这种技术思路是当前语言模型的发展趋势。这类模型虽然很有发展前景的,但模型训练和微调所需的成本非常高。


根据 OpenAI 目前公开的信息,ChatGPT 的训练过程共分为三个阶段:



首先,第一个阶段是类似于 GPT 3.5 的有监督策略模型,这个基础模型很难理解人类不同类型指令中蕴含的意图,也很难判断生成内容的质量高低。研究人员从 prompt 数据集中随机抽取了一些样例,然后让专业的标注人员根据指定 prompt 给出高质量的答案。这个人工过程获得的 prompt 及其相应高质量答案被用于微调初始的有监督策略模型,使其具备基本的 prompt 理解能力,并初步提高生成答案的质量。


第二阶段研究团队抽取模型根据给定 prompt 生成的多个输出,然后让人类研究员对这些输出进行排序,再用排序数据训练奖励模型(reward model,RM)。ChatGPT 采取 pair-wise loss 来训练 RM。


第三阶段研究团队采用强化学习来增强预训练模型的能力,利用上一阶段学好的 RM 模型来更新预训练模型参数。


我们可以发现,在 ChatGPT 训练的三个阶段中,只有第三阶段不需要使用人工标注数据,而第一第二阶段都需要大量的人工标注。因此 ChatGPT 这类模型虽然性能很好,但是为了提高其遵循指令的能力,人工成本非常高。随着模型规模越来越大,能力范围越来越广,这个问题就会越发严重,最终成为阻碍模型发展的瓶颈。


一些研究尝试提出解决这一瓶颈的方法,比如华盛顿大学等机构近期联合发表了一篇论文《SELF-INSTRUCT: Aligning Language Model with Self Generated Instructions》,提出的新框架 SELF-INSTRUCT 通过引导模型自己的生成过程,提高了预训练语言模型的指令遵循能力。



论文地址:https://arxiv.org/pdf/2212.10560v1.pdf


SELF-INSTRUCT 是一种半自动化过程,使用来自模型本身的指令信号对预训练的 LM 进行指令调整。如下图所示,整个过程是一个迭代引导算法。



SELF-INSTRUCT 从有限的种子集开始,指导整个生成过程的手动编写指令。在第一阶段,模型被 prompt 成为新任务生成指令,该步骤是利用现有的指令集来创建更广泛的指令,以此来定义新任务。SELF-INSTRUCT 还为新生成的指令集创建输入输出实例,以用于监督指令调整。最后,SELF-INSTRUCT 还对低质量和重复指令进行修剪。整个过程是反复迭代执行的,最终模型能为大量任务生成指令。


为了验证新方法的有效性,该研究在 GPT-3 上应用 SELF-INSTRUCT 框架,最终产生大约 52k 条指令,82k 实例输入和目标输出。研究者观察到 GPT-3 在 SUPER-NATURALINSTRUCTIONS 数据集中的新任务上比原始模型获得了 33.1% 的绝对改进,与使用私人用户数据和人工标注训练的 InstructGPT_001 性能相当。



为了进一步评估,该研究为新任务整理了一组专家编写的指令,并通过人工评估表明,使用 SELF-INSTRUCT 的 GPT-3 性能会大大优于现有使用公共指令数据集的模型,并且仅比 InstructGPT_001 落后 5%。



SELF-INSTRUCT 提供了一种几乎不需要人工标注的方法,实现了预训练语言模型与指令对齐。已有多个工作在类似的方向上做出尝试,都收获了不错的结果,可以看出这类方法对于解决大型语言模型人工标注成本高的问题非常有效。这将让 ChatGPT 等 LLM 变得更强,走得更远。


参考链接:

https://zhuanlan.zhihu.com/p/589533490

https://openai.com/blog/chatgpt/


相关文章
|
10月前
|
数据采集 算法 数据挖掘
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
英伟达提出的CLIMB框架,是一种自动化优化大型语言模型(LLM)预训练数据混合的创新方法。通过语义嵌入与聚类技术,CLIMB能系统地发现、评估并优化数据混合策略,无需人工干预。该框架包含数据预处理、迭代自举及最优权重确定三大阶段,结合小型代理模型与性能预测器,高效搜索最佳数据比例。实验表明,基于CLIMB优化的数据混合训练的模型,在多项推理任务中显著超越现有方法,展现出卓越性能。此外,研究还构建了高质量的ClimbMix数据集,进一步验证了框架的有效性。
480 0
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
|
11月前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
725 8
|
机器学习/深度学习 PyTorch 测试技术
TurboAttention:基于多项式近似和渐进式量化的高效注意力机制优化方案,降低LLM计算成本70%
**TurboAttention**提出了一种全新的LLM信息处理方法。该方法通过一系列优化手段替代了传统的二次复杂度注意力机制,包括稀疏多项式软最大值近似和高效量化技术。
566 5
TurboAttention:基于多项式近似和渐进式量化的高效注意力机制优化方案,降低LLM计算成本70%
|
机器学习/深度学习 人工智能 算法
LLM超越人类时该如何对齐?谷歌用新RLHF框架解决了这个问题
谷歌提出了一种名为Evolving Alignment via Asymmetric Self-Play(eva)的新RLHF框架,通过创造者和解决者交替优化,生成具有挑战性的提示,提高模型泛化能力、样本效率和对齐鲁棒性。实验结果显示,eva在多个基准上显著提升性能,展示了其创新性和有效性。然而,eva的实现较为复杂,且实际应用中的长期效果仍待验证。
222 5
|
8月前
|
存储 自然语言处理 算法
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
本文探讨了在构建对话系统时如何通过一种内存高效算法降低大语言模型(LLM)的Token消耗和运营成本。传统方法中,随着对话深度增加,Token消耗呈指数级增长,导致成本上升。
744 7
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
9854 80
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
10月前
|
机器学习/深度学习 人工智能 算法
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
RAGEN是一个基于StarPO框架的开源强化学习系统,通过马尔可夫决策过程形式化Agent与环境的交互,支持PPO、GRPO等多种优化算法,显著提升多轮推理训练的稳定性。
1300 5
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
|
7月前
|
人工智能 缓存 监控
GitHub 8k star!Portkey AI Gateway 如何帮你3行代码接入1600+ LLM,实现成本、可靠性与安全三赢?
Portkey AI Gateway 是一个轻量级、高速、安全的中间层,帮助应用对接多模态 AI 模型,统一管理,快速落地。支持超1600款语言、视觉、音频、图像模型,通过 1 个 API 接口实现快速、可靠、安全的模型路由。具备智能路由、自动重试、缓存机制、合规控制等功能,助力企业高效构建 AI 应用。
525 0
|
11月前
|
机器学习/深度学习 人工智能 算法
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架
SWEET-RL是一种基于训练时信息的逐步评估算法,显著提升了多轮大型语言模型(LLM)代理在强化学习中的成功率。相比现有方法,SWEET-RL将成功率提高6%,使小型开源模型如Llama-3.1-8B达到甚至超越GPT-4O等大型专有模型性能。通过非对称Actor-Critic结构、创新优势函数参数化及两阶段训练流程,SWEET-RL优化了信用分配机制与泛化能力,降低了计算成本。ColBench基准测试显示,SWEET-RL在后端编程和前端设计任务中表现卓越,为AI代理训练技术带来突破性进展。
438 2
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架