系列解读:深度时空视觉表征学习方法及应用

简介: 系列解读:深度时空视觉表征学习方法及应用


视觉表征学习是人工智能领域的一个重要分支,它也是大部分计算机视觉与多媒体任务的基石。近几年受自然语言处理领域 Transformer 结构的启发,视觉表征学习的网络架构也从传统卷积神经网络(CNN)演变到 Vision Transformer 的设计范式。此外,得益于无监督、自监督机器学习的技术发展,视觉表征学习的训练模式逐渐摆脱了对大量人工标注数据的严重依赖,涌现出一系列高性能的自监督视觉表征学习技术。因此本次分享将由京东科技视觉技术创新团队的四位研究员分别介绍深度时空视觉表征学习(图像、视频及 3D 视觉)在网络架构和自监督训练模式这两个维度上的一系列技术创新,例如针对图像和视频表征学习的高性能 Transformer 结构(CoTNet、Wave-ViT、Dual-ViT、SIFA、DTF)。



12 月 20 日 19:00-21:00
主题一:图像表征学习方法及应用分享嘉宾:潘滢炜,京东科技视觉技术创新团队资深研究员,谷歌学术引用率 5000 余次,曾获微软学者奖学金、ACM SIGMM China 最佳博士论文奖和新星奖、ACM Multimedia 最佳演示系统奖和最佳开源项目奖。

主题二:自监督表征学习方法及应用分享嘉宾:亚龙,京东科技视觉技术创新团队资深研究员。在人工智能、计算机视觉领域国际会议如 CVPR, ICCV, ICLR, AAAI 等发表论文 20 余篇,并获得 ACM MM 图像检索、CVPR 细粒度图像识别等多项竞赛冠军。
主题三:视频表征学习方法及应用分享嘉宾:邱钊凡,京东科技视觉技术创新团队研究员,主要研究兴趣是视频内容理解、多媒体数据分析和多媒体内容检索等方向,在相关领域国际会议上发表论文 20 余篇,谷歌学术引用率三千余次,曾获微软学者奖学金、ACM SIGMM China 最佳博士论文奖。
主题四:3D视觉表征学习方法及应用分享嘉宾:蔡琪,京东科技视觉技术创新团队研究员,在 CVPR、NeurIPS、TIP 等会议期刊发表多篇无监督学习、目标检测相关论文,曾获得 VisDA 跨域目标检测、SAPIEN ManiSkill 2021 机械臂比赛等多项竞赛冠军,相关研究工作在物流场景中落地应用。

相关文章
|
运维 监控 数据可视化
日志服务 HarmonyOS NEXT 日志采集最佳实践
鸿蒙操作系统(HarmonyOS)上的日志服务(SLS)SDK 提供了针对 IoT、移动端到服务端的全场景日志采集、处理和分析能力,旨在满足万物互联时代下应用的多元化设备接入、高效协同和安全可靠运行的需求。
118016 99
|
机器学习/深度学习 编解码
ICCV 2023 超分辨率(Super-Resolution)论文汇总
ICCV 2023 超分辨率(Super-Resolution)论文汇总
926 0
|
前端开发
HTML+CSS仿京东购物车页面静态页面
HTML+CSS仿京东购物车页面静态页面
363 2
|
测试技术
Pytest----多进程并行执行自动化测试脚本
Pytest----多进程并行执行自动化测试脚本
1330 0
Pytest----多进程并行执行自动化测试脚本
|
4月前
|
自然语言处理 前端开发 测试技术
Playwright初学指南 (2):全面解析元素定位策略
本文深入解析Playwright革命性的元素定位体系,详解八大核心定位策略(语义化角色、文本内容、标签属性等)及其适用场景,提供动态元素处理方案和调试技巧。通过定位策略性能对比和企业级最佳实践,帮助开发者构建健壮、可维护的自动化测试脚本,有效解决75%的Web自动化测试失败问题。
|
9月前
|
机器学习/深度学习 运维 自然语言处理
当深度学习遇上故障根因分析:运维人的绝佳拍档
当深度学习遇上故障根因分析:运维人的绝佳拍档
416 17
|
机器学习/深度学习 编解码 算法框架/工具
经典神经网络论文超详细解读(二)——VGGNet学习笔记(翻译+精读)
经典神经网络论文超详细解读(二)——VGGNet学习笔记(翻译+精读)
715 1
经典神经网络论文超详细解读(二)——VGGNet学习笔记(翻译+精读)
|
存储 人工智能 Serverless
妙用AI助理帮您定方案、找细节
当您希望在繁琐的文档中迷失方向时,AI助理能为您提供清晰指引,助您轻松实现加速配置与获取核心代码参数,显著简化开发流程。无论是方案获取还是寻找细节,只需向AI助理提问,即可获得详细步骤与示例代码,大幅提升工作效率。点击右下角的AI助理,即刻体验便捷服务。
473 1
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
存储 安全 数据安全/隐私保护
移动APP安全加固技术深度解析
【7月更文挑战第12天】移动APP安全加固技术是保障移动应用安全的重要手段。通过对Android和iOS两大主流平台的安全加固,可以有效防止逆向分析、动态调试、数据篡改等安全威胁。在实际应用中,我们需要结合静态层面、动态层面和数据层面的加固技术,全方位地提升APP的安全性。同时,随着技术的不断发展,我们也需要不断关注新的安全威胁和加固技术,确保移动应用的安全性和稳定性。