ICLR盲审阶段就被评审赞不绝口的论文:会是Transformer架构的一大创新吗?

简介: ICLR盲审阶段就被评审赞不绝口的论文:会是Transformer架构的一大创新吗?

首次!无残差连接或归一化层,也能成功训练深度transformer。


尽管取得了很多显著的成就,但训练深度神经网络(DNN)的实践进展在很大程度上独立于理论依据。大多数成功的现代 DNN 依赖残差连接和归一化层的特定排列,但如何在新架构中使用这些组件的一般原则仍然未知,并且它们在现有架构中的作用也依然未能完全搞清楚。


残差架构是最流行和成功的,最初是在卷积神经网络(CNN)的背景下开发的,后来自注意力网络中产生了无处不在的 transformer 架构。残差架构之所以取得成功,一种原因是与普通 DNN 相比具有更好的信号传播能力,其中信号传播指的是几何信息通过 DNN 层的传输,并由内核函数表示。


最近,使用信号传播原则来训练更深度的 DNN 并且残差架构中没有残差连接和 / 或归一化层的参与,成为了社区感兴趣的领域。原因有两个:首先验证了残差架构有效性的信号传播假设,从而阐明对 DNN 可解释性的理解;其次这可能会实现超越残差范式的 DNN 可训练性的一般原则和方法。


对于 CNN,Xiao et al. (2018)的工作表明,通过更好初始化提升的信号传播能够高效地训练普通深度网络,尽管与残差网络比速度显著降低。Martens et al. (2021) 的工作提出了 Deep Kernel Shaping (DKS),使用激活函数转换来控制信号传播,使用 K-FAC 等强二阶优化器在 ImageNet 上实现了普通网络和残差网络的训练速度相等。Zhang et al. (2022) 的工作将 DKS 扩展到了更大类的激活函数,在泛化方面也实现了接近相等。


信号传播中需要分析的关键量是 DNN 的初始化时间内核,或者更准确地说,是无限宽度限制下的近似内核。对于多层感知机(MLP)以及使用 Delta 初始化的 CNN,该内核可以编写为仅包含 2D 函数的简单层递归,以便于进行直接分析。跨层 transformer 的内核演化更加复杂,因此 DKS 等现有方法不适用 transformer 或实际上任何包含自注意力层的架构。


在 MLP 中,信号传播是通过查看(一维)内核的行为来判断的,而 transformer 中的信号传播可以通过查看(高维)内核矩阵在网络层中的演化来判断。


该研究必须避免一种情况:对角线元素随深度增加快速增长或收缩,这与不受控制的激活范数有关,可能导致饱和损失或数值问题。避免秩崩溃(rank collapse)对于深度 transformer 的可训练性是必要的,而是否可以训练深度无残差 transformer 仍是一个悬而未决的问题。


ICLR 2023 盲审阶段的这篇论文解决了这个问题,首次证明了无需残差连接或归一化层时也可能成功训练深度 transformer。为此,他们研究了深度无残差 transformer 中的信号传播和秩崩溃问题,并推导出三种方法来阻止它们。具体而言,方法中使用了以下组合:参数初始化、偏置矩阵和位置相关的重缩放,并强调了 transformer 中信号传播特有的几种复杂性,包括与位置编码和因果掩蔽的交互。研究者实证证明了他们的方法可以生成可训练的深度无残差 transformer。


在实验部分,在 WikiText-103 和 C4 数据集上,研究者展示了使用他们主要的方法——指数信号保持注意力(Exponential Signal Preserving Attention, E-SPA),可以通过延长大约五倍的训练时间使得标准 transformer 与文中无残差 transformer 的训练损失相当。此外通过将这一方法与残差连接结合,研究者还表明无归一化层的 transformer 能够实现与标准 transformer 相当的训练速度。



论文地址:https://openreview.net/pdf?id=NPrsUQgMjKK


对于这篇论文,Google AI 首席工程师 Rohan Anil 认为是 Transformer 架构向前迈出的一大步,还是一个基础性的改进。



构造无捷径可训练的深层 Transformer


迄今为止,纠正 Transformer 秩崩溃(rank collapse)的唯一策略依赖于残差连接,该方式跳过了自注意力层固有的可训练性问题。与此相反,该研究直接解决这个问题。首先通过注意力层更好地理解信号传播,然后根据见解(insights)进行修改,以在深度 transformer 中实现对忠实信号的传输,无论是否使用残差连接,都可以对信号进行训练。


具体而言,首先,该研究对仅存在注意力的深度 vanilla transformer 进行了一下简单设置,之后他们假设该 transformer 具有单一头(h = 1)设置或具有多头设置,其中注意力矩阵 A 在不同头之间不会变化。如果块 l≤L 初始化时有注意力矩阵 A_l,则最终块的表示形式为 X_L:



对于上式而言,如果采用正交初始化,那么就可以在初始化时正交。


在上述假设下,如果采用表示跨位置输入核矩阵,经过一些简化处理后,可以得到如下公式:



从这个简化公式(深度仅注意力 transformer 中的核矩阵)中,可以确定对 (A_l)_l 的三个要求:


必须在每个块中表现良好,避免退化情况,如秩崩溃和爆炸 / 消失的对角线值;

A_l 必须是元素非负 ∀l;

A_l 应该是下三角∀l,以便与因果掩码注意力兼容。


在接下来的 3.1 和 3.2 节中,该研究专注于寻找满足上述需求的注意力矩阵,他们提出了 3 种方法 E-SPA、U-SPA 和 Value-Skipinit,每种方法都用来控制 transformer 的注意力矩阵,即使在很深的深度也能实现忠实的信号传播。此外,3.3 节演示了如何修改 softmax 注意力以实现这些注意力矩阵。


下图中,该研究对提出的两个 SPA 方案进行了验证,U-SPA 和 E-SPA,结果显示即使在网络较深时也能成功地避免仅注意力 vanilla transformers 中的秩崩溃现象。



实验


WikiText-103 基线:首先,该研究验证了没有残差连接的标准深度 transformer 是不可训练的,即使它们有归一化层 (LN) 和 transformed 激活,但本文的方法可以解决这个问题。如图 2 所示,可以清楚地看到,从标准 transformer 中移除残差连接使其不可训练,训练损失稳定在 7.5 左右。正如图 1 所示,标准 transformer 遭受了秩崩溃。



另一方面,该研究提出的 E-SPA 方法优于 U-SPA 和 Value-Skipinit。然而,与本文无残差方法相比,带有残差和 LN 的默认 transformer 仍然保持训练速度优势。


在表 1 中,该研究使用提出的方法评估了 MLP 块中不同激活函数的影响,以及 LN 在无残差 transformer 的使用。可以看到在深度为 36 处,本文方法针对一系列激活实现了良好的训练性能:DKS-transformed GeLU、TAT-transformed Leaky ReLU 以及 untransformed GeLU ,但不是 untransformed Sigmoid。通过实验还看到,层归一化对于训练速度而言相对不重要,甚至在使用 SPA 时对 transformed activation 的激活有害,因为 SPA 已经具有控制激活规范的内置机制。



在图 3 中,我们看到一种不需要更多迭代就能匹配默认 transformer 训练损失的方法是使用归一化残差连接。



表 2 显示带有归一化残差和 LN 的 E-SPA 优于默认的 PreLN transformer。



下图 4(a)表明 E-SPA 再次优于其他方法;4(b)表明训练损失差距可以通过简单地增加训练时间来消除。




相关文章
|
2月前
|
人工智能 测试技术 数据处理
首个Mamba+Transformer混合架构多模态大模型来了,实现单卡千图推理
【10月更文挑战第18天】《LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture》提出了一种新型多模态大模型LongLLaVA,结合了Mamba和Transformer架构,通过系统优化实现在单张A100 80GB GPU上处理近千张图像的突破。该模型在视频理解、高分辨率图像分析和多模态智能体任务中表现出色,显著提升了计算效率。
159 64
存储 人工智能 自然语言处理
36 6
|
28天前
|
机器学习/深度学习 自然语言处理 计算机视觉
探索深度学习中的Transformer架构
探索深度学习中的Transformer架构
36 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Tokenformer:基于参数标记化的高效可扩展Transformer架构
本文是对发表于arXiv的论文 "TOKENFORMER: RETHINKING TRANSFORMER SCALING WITH TOKENIZED MODEL PARAMETERS" 的深入解读与扩展分析。主要探讨了一种革新性的Transformer架构设计方案,该方案通过参数标记化实现了模型的高效扩展和计算优化。
116 0
|
3月前
|
机器学习/深度学习 存储 算法
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
150 7
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
|
2月前
|
消息中间件 架构师 Cloud Native
软考高级系统架构师论文,到底该怎么写
软考高级系统架构师论文,到底该怎么写
137 0
|
2月前
|
机器学习/深度学习 人工智能
【AI大模型】深入Transformer架构:编码器部分的实现与解析(下)
【AI大模型】深入Transformer架构:编码器部分的实现与解析(下)
|
4月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
4月前
|
运维 监控 架构师
如何进行系统架构评审:全面指导与实践
【8月更文挑战第18天】系统架构评审是确保软件项目成功的关键环节之一。通过科学合理的评审流程和严格的评审要点控制,可以显著提高架构设计的质量和项目的整体成功率。
|
4月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
51 1