7 Papers & Radios | 用神经网络推开数学推理大门;世界首个宏基因组蛋白质图谱

简介: 7 Papers & Radios | 用神经网络推开数学推理大门;世界首个宏基因组蛋白质图谱

本周重要论文包括中山大学人机物智能融合实验室(HCP Lab)在数学解题领域的一系列研究,以及 Meta AI 用 150 亿参数语言模型预测 6 亿+宏基因组蛋白质结构图谱。


目录:


  1. Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
  2. GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning
  3. A Policy-Guided Imitation Approach for Offline Reinforcement Learning
  4. Evolutionary-scale rediction of atomic level protein structure with a language model
  5. Data-Free Neural Architecture Search via Recursive Label Calibration
  6. Transformers in Remote Sensing: A Survey
  7. Superconducting Optoelectronic Single-photon Synapses
  8. ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)


论文 1:Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems



摘要:一个实用的数学应用题求解器应该能够解决各种类型的数学应用题,如一元一次方程,二元一次方程组,一元二次方程等类型。然而大多数的数学应用题求解工作只针对四则运算类题目进行设计,而这类设计往往难以扩展到更多题型,无法使用一个统一的数学应用题求解器同时求解各种类型表达式的应用题。此外,当下的大部分数学应用题求解器缺乏对题目文本和求解表达式之间的语义约束。


针对上述问题,中山大学人机物智能融合实验室团队提出一种统一表达式树表示方案,通过引入额外的运算符连结多个表达式,将一元一次方程,二元一次方程组,一元二次方程等类型的表达式进行统一表示,从而可以简化求解器的设计的同时也可以求解多种类型的应用题,如下图所示。


推荐:中山大学 HCP Lab 团队:AI 解题新突破,神经网络推开数学推理大门(1)。


论文 2:GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning



摘要:自动数学解题最近获得了越来越多的关注,大多数工作关注数学应用题自动求解。然而很少工作关注几何题。相比较于数学应用题,几何题需要同时对文本描述、图形图表进行理解,因为在几何题目中,题目文本和图形图表通常是相辅相成,缺一不可的。现有的几何题自动求解方法高度依赖规则并只在小数据集上进行评估。


为了推动几何题自动求解的研究,中山大学人机物智能融合实验室团队构建了一个由 5010 道几何选择题组成的问答数据集 GeoQA。如图所示,GeoQA 数据集中的每一个样本具有题目描述、几何图像、问题选项、答案、问题类型、知识点、解答解析,以及按解题步骤标注的形式程序。在题目规模上,该数据集是前人工作常用的 GeoS 数据集的 25 倍。


推荐:中山大学 HCP Lab 团队:AI 解题新突破,神经网络推开数学推理大门(2)。


论文 3:A Policy-Guided Imitation Approach for Offline Reinforcement Learning



摘要:本文中,新方法 POR 对离线强化学习算法的策略评估和策略提升过程进行解耦式学习,完成了状态连接的思想。POR 既拥有了训练的稳定性,也拥有了稳定的逻辑范围内的数据外的泛化能力,在基准上表现惊人,并提出了该解耦式学习范式的潜在好处。


推荐:NeurIPS 2022 Oral | 离线强化学习新范式!京东科技 & 清华提出解耦式学习算法。


论文 4:Evolutionary-scale Rediction of Atomic Level Protein Structure with a Language Model



摘要:Meta AI 宣布推出包含 6 亿多个蛋白质的 ESM 宏基因组图谱(ESM Metagenomic Atlas),它是首个蛋白质宇宙「暗物质」的综合视图。这还是最大的高分辨率预测结构数据库,比任何现有的蛋白质结构数据库都要大 3 倍,并且是第一个全面、大规模地涵盖宏基因组蛋白质的数据库。


推荐:世界首个!Meta AI 开放 6 亿 + 宏基因组蛋白质结构图谱,150 亿参数语言模型用两周完成。


论文 5:Data-Free Neural Architecture Search via Recursive Label Calibration



摘要:神经网络架构搜索 (NAS) 自 2016 年提出以来就广受关注,很多工作通过设计搜索空间,提升搜索算法等提升 NAS 的精度。今天这篇文章主要研究如何将 NAS 用于数据缺失的情况,文中提出 data-free NAS,该架构仅需要一个预训练模型,就可以自动进行网络搜索。目前该方法主要研究图片领域。


推荐:ECCV 2022 | 谷歌提出 Data-free NAS,网络搜索仅需一个预训练模型。


论文 6:Transformers in Remote Sensing: A Survey



摘要:过去十年,深度学习算法在遥感图像分析中得到广泛应用。最初引入到 NLP 领域的 transformer 已经渗透到计算机视觉领域。遥感社区也是如此,他们见证了视觉 transformer 用于各种任务的增加。不过到目前为止许多调查都集中在计算机视觉中的 transformer,而关于遥感方面的调查却很少。


本文系统回顾了遥感中使用基于 transformer 的最新进展,多达 60 多种方法,这些方法可用于解决遥感子领域中不同的遥感问题:超高分辨率 (VHR)、高光谱 (HSI) 和合成孔径雷达 (SAR) 图像。


推荐:回顾 60 多种 transformer 研究,一文总结遥感领域最新进展。


论文 7:Superconducting Optoelectronic Single-photon Synapses



摘要:AI 系统越来越受限于为实现其功能的硬件。现在,一种新的超导光子电路问世,它可模拟脑细胞之间的连接。这仅需消耗人类具有同类功能细胞能量的 0.3% ,而运行速度却可提高约 30000 倍。相关论文在《自然 · 电子学》上发表。


推荐:超高效人工光电神经元成真?速度比自然神经元快 3 万倍,研究登 Nature 子刊。

相关文章
|
7月前
|
机器学习/深度学习 数据采集 算法
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
576 42
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
|
5月前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
10月前
|
人工智能 供应链 调度
|
11月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
752 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
11月前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
4568 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
764 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
877 3
图卷积网络入门:数学基础与架构设计
|
机器学习/深度学习 运维 安全
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
金融交易网络与蛋白质结构的共同特点是它们无法通过简单的欧几里得空间模型来准确描述,而是需要复杂的图结构来捕捉实体间的交互模式。传统深度学习方法在处理这类数据时效果不佳,图神经网络(GNNs)因此成为解决此类问题的关键技术。GNNs通过消息传递机制,能有效提取图结构中的深层特征,适用于欺诈检测和蛋白质功能预测等复杂网络建模任务。
566 2
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
|
机器学习/深度学习 数据可视化
KAN干翻MLP,开创神经网络新范式!一个数十年前数学定理,竟被MIT华人学者复活了
【10月更文挑战第12天】MIT华人学者提出了一种基于Kolmogorov-Arnold表示定理的新型神经网络——KAN。与传统MLP不同,KAN将可学习的激活函数放在权重上,使其在表达能力、准确性、可解释性和收敛速度方面表现出显著优势,尤其在处理高维数据时效果更佳。然而,KAN的复杂性也可能带来部署和维护的挑战。论文地址:https://arxiv.org/pdf/2404.19756
400 1

热门文章

最新文章