大模型能自己「写」论文了,还带公式和参考文献,试用版已上线

简介: 大模型能自己「写」论文了,还带公式和参考文献,试用版已上线


Meta AI 提出了一个可以总结学术文献,解决数学问题的新模型,该模型还能生成百科文章,编写科学代码,注释分子和蛋白质等等。


近年来,随着各学科领域研究的进步,科学文献和数据呈爆炸式增长,使学术研究者从大量信息中发现有用的见解变得越来越困难。通常,人们借助搜索引擎来获取科学知识,但搜索引擎不能自主组织科学知识。


现在,来自 Meta AI 的研究团队提出了一种新的大型语言模型 Galactica,可以存储、组合和推理科学知识。


论文地址:https://galactica.org/static/paper.pdf

试用地址:https://galactica.org/


Galactica 模型有多强大呢,它可以自己总结归纳出一篇综述论文:


也可以生成词条的百科查询:


对所提问题作出知识性的回答:


这些任务对于人类学者来说尚且是具有挑战性的任务,但 Galactica 却很好地完成了。图灵奖得主 Yann LeCun 也在推特上发文称赞:


我们来看一下 Galactica 模型的具体细节。


模型概述


Galactica 模型是在大量的论文、参考资料、知识库和许多其他来源的科学语料库上进行训练的,包括超过 4800 万篇论文、教科书和讲义、数百万种化合物和蛋白质知识、科学网站、百科全书等。与依赖于未经整理的、基于网络爬虫文本的现有语言模型不同,Galactica 训练所用的语料库是高质量且经过高度整理的。该研究在不过拟合的前提下对模型进行多个 epoch 的训练,其中在上游和下游任务上的性能通过使用重复的 token 得到改善。


Galactica 的性能在一系列科学任务上优于现有模型。在 LaTeX 方程式等技术知识的探索任务上,Galactica 与 GPT-3 的性能是 68.2% VS 49.0%。Galactica 在推理方面也表现出色,在数学 MMLU 基准上的表现显著优于 Chinchilla。


尽管没有接受过通用语料库的训练,Galactica 在 BIG-bench 上的性能也优于 BLOOM 和 OPT-175B。此外,它还在 PubMedQA 和 MedMCQA 开发等下游任务上创下了 77.6% 和 52.9% 的性能新高。


简单来说,该研究将逐步推理封装在特殊的 token 中,以模仿内部工作原理。这允许研究人员使用自然语言与模型进行交互,下图是 Galactica 的试用界面。


值得一提的是,除了文本生成,Galactica 还可以执行涉及化学公式和蛋白质序列的多模态任务。这将为药物发现领域做出贡献。


实现细节


本文的语料库包含 1060 亿个 token,这些 token 来自论文、参考文献、百科全书以及其他科学资料。可以说该研究将自然语言资源(论文、参考书)与自然界中的序列(蛋白质序列、化学形式)都囊括了。表 1 和表 2 中显示了语料库的细节。


语料库有了,接下来是对数据怎么操作。一般来讲,对 tokenization 的设计是非常重要的。例如,蛋白质序列是根据氨基酸残基来编写的,那么基于字符的 tokenization 是合适的。为了实现 tokenization,该研究对不同的模态进行了专门的 token 化。具体表现在(包括但不仅限于):


引用:用特殊的参考 token[START_REF]和 [END_REF] 来包装引用;

逐步推理:用 working memory token 来封装逐步推理,模拟内部 working memory 上下文;

数字:把数字分成单独的 token。例如, 737612.62 → 7,3,7,6,1,2,.,6,2;

SMILES 公式:用 [START_SMILES] 和[END_SMILES]包装序列,并应用基于字符的 tokenization。同样,该研究使用 [START_I_SMILES] 和[END_I_SMILES]来表示异构体 SMILES。例如:C(C(=O)O)N→C,(,C,(,=,O,),O,),N;

DNA 序列:应用一种基于字符的 tokenization,将每个核苷酸碱基视为一个 token,其中起始 token 为 [START_DNA] 和[END_DNA]。例如,CGGTACCCTC→C, G, G, T, A, C, C, C, T, C。


如下图 4 显示了对一篇论文的引用进行处理的示例。在处理引用时使用全局标识符和特殊 token[START_REF]和 [END_REF] 来表示引用的地方。


数据集处理好之后,接下来就是怎么实现。Galactica 在 Transformer 架构的基础上进行了以下修改:


GeLU 激活:将 GeLU 激活用于各种大小的模型;

上下文窗口:对于不同大小的模型,使用 2048 长度的上下文窗口;

无偏置:遵循 PaLM,在密集内核或层规范中不使用偏置;

学习位置嵌入:学习位置嵌入用于模型;

词汇表:使用 BPE 构建一个包含 50k token 的词汇表。


表 5 列出了不同大小模型以及训练超参数。


实验


重复的 token 被认为是无害的


从图 6 可以看出,在经过四个 epoch 的训练之后,验证损失继续下降。拥有 120B 参数的模型在第五个 epoch 开始时才开始过拟合。这是出乎意料的,因为现有的研究表明重复的 token 可能对性能有害。该研究还发现,30B 和 120B 的模型在 epoch-wise 后表现出双下降效应,即验证损失达到平稳(或上升),然后是下降。这种效果在每个 epoch 后都变得更强,最明显的是 120B 模型在训练结束时。


图 8 结果显示实验没有出现过拟合迹象,这表明重复 token 能够提高下游和上游任务性能。


其他结果


键入公式太慢了,现在用提示就能生成 LaTeX:


在化学反应中,要求 Galactica 在化学方程 LaTeX 中预测反应的产物,模型仅根据反应物就能进行推理,结果如下:


表 7 中报告了一些其他结果:


Galactica 的推理能力。该研究首先在 MMLU mathematics 基准上进行评估,并在表 8 中报告了评估结果。Galactica 与较大的基础模型相比表现强劲,并且使用 token 似乎可以提高 Chinchilla 的性能,即使对于较小的 30B Galactica 模型也是如此。


该研究还对 MATH 数据集进行了评估,以进一步探索 Galactica 的推理能力:


从实验结果可以得出:Galactica 在思维链和提示方面都大大优于基础 PaLM 模型。这表明 Galactica 在处理数学任务上是个更好的选择。


在下游任务的评估结果如表 10 所示。Galactica 显着优于其他语言模型,并且在大多数任务中优于更大的模型(Gopher 280B)。与 Chinchilla 相比,性能表现差异更大,Chinchilla 在子集任务上似乎更强:特别是高中科目以及数学较少、记忆密集型任务。相比之下,Galactica 往往在数学和研究生水平的任务中表现更好。


该研究还评估了 Chinchilla 在给定输入上下文的情况下预测引用的能力,这是对 Chinchilla 组织科学文献能力的一个重要测试。结果如下:


更多实验内容,请参考原论文。


相关文章
|
人工智能 自然语言处理 文字识别
理解指向,说出坐标,Shikra开启多模态大模型参考对话新维度
理解指向,说出坐标,Shikra开启多模态大模型参考对话新维度
444 0
|
3月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
771 109
|
3月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
329 2
|
3月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1651 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
309 120
|
4月前
|
存储 人工智能 自然语言处理
告别文字乱码!全新文生图模型Qwen-Image来咯
通义千问团队开源了Qwen-Image,一个20B参数的MMDiT模型,具备卓越的文本渲染和图像编辑能力。支持复杂中英文文本生成与自动布局,适用于多场景图像生成与编辑任务,已在魔搭社区与Hugging Face开源。
841 2
|
4月前
|
文字识别 算法 语音技术
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
634 23
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
683 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
3月前
|
自然语言处理 机器人 图形学
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
腾讯混元图像3.0,真的来了——开源,免费开放使用。 正式介绍一下:混元图像3.0(HunyuanImage 3.0),是首个工业级原生多模态生图模型,参数规模80B,也是目前测评效果最好、参数量最大的开源生图模型,效果可对…
865 2
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型