用GFlowNets统一生成模型,Bengio等人数页论文给讲通了

简介: 用GFlowNets统一生成模型,Bengio等人数页论文给讲通了
Yoshua Bengio 指出的未来方向 GFlowNets 与现有的生成模型有什么关系?

生成流网络(GFlowNets)是图灵奖得主 Yoshua Bengio 对 AI 领域未来方向提出的想法。GFlowNets 基于强化学习、深度生成模型和概率建模,涉及变分模型及推断,为非参数贝叶斯建模、生成式主动学习以及抽象表征的无监督或自监督学习打开了新的大门。去年,Bengio 以一作的身份发表了长达 70 页的论文《GFlowNet Foundations》。GFlowNets 灵感来源于信息在时序差分 RL 方法中的传播方式(Sutton 和 Barto,2018 年)。两者都依赖于 credit assignment 一致性原则,它们只有在训练收敛时才能实现渐近。由于状态空间中的路径数量呈指数级增长,因此实现梯度的精确计算比较困难,因此,这两种方法都依赖于不同组件之间的局部一致性和一个训练目标,即如果所有学习的组件相互之间都是局部一致性的,那么我们就得到了一个系统,该系统可以进行全局估计。现在,Bengio 及其学生张鼎怀等发表了一篇新论文《Unifying Generative Models with GFlowNets》,简要介绍了现有深度生成模型与 GFlowNet 框架之间的联系,阐明了它们的重叠特征,并通过马尔可夫轨迹学习的视角提供了一个统一的观点,并进一步提供了一种统一训练和推理算法的方法。


论文地址:https://arxiv.org/abs/2209.02606


文主要内容分成 6 个部分: 


第一部分是 GFlowNets 的基本介绍。第二部分是 Hierarchical VAE (HVAE),这是一类重要的生成模型。本文基于分析发现:HVAE 和 GFlowNets 之间存在细微差别,基于此他们得出两个观察:一是在某种定义下,HVAE 是一种特殊的 GFlowNets;另一个是两者在训练方式上,存在一些相似性。第三部分是扩散模型 & SDE( stochastic differential equatio ):扩散模型也是一类重要的生成模型,是受非平衡热力学的启发,其与 VAE 或流动模型不同,扩散模型是用固定的程序学习的;而 SDE 可以看做是生成模型当中的一项重要技术。本文发现:在某种意义上,SDE 是 GFlowNets 的一种特殊情况,本文将随机过程特性和 GFlowNets 特性之间进行类比。第四部分是精确似然模型,这里介绍了自回归模型(AR 模型),这是最常见的平稳时间序列模型之一,本文发现 AR 模型可以被视为 GFlowNets,此外,本文还发现 NF(归一化流)也是一种特殊的 GFlowNets。第五部分是从数据中学习奖励函数,本文认为基于能量的模型(EBM)可以用作 GFlowNets 训练的 (负对数) 奖励函数,可以使用任何 GFlowNets 建模,并将其与 EBM 一起训练。第六部分为总结,该论文将现有的生成模型解释为在样本轨迹上具有不同策略的 GFlowNets。这提供了一些关于现有生成建模框架之间重叠的见解,以及它们与用于训练它们的通用算法的联系。此外,这种统一意味着一种构建不同类型生成建模方法聚合的方法,其中 GFlowNets 充当易于处理的推理和训练的通用粘合剂。

相关文章
|
4月前
|
存储 弹性计算 运维
AI 时代下阿里云基础设施的稳定性架构揭秘
十五年磨一剑,稳定性为何是今天的“命门”?
滴滴抢单器全自动新款, 抢单加速器永久免费版,顺风车网约车autojs
包括订单检测、信息解析、条件筛选和自动接单等模块。使用时需要根据实际情况调整配置参数和优化UI元素定位逻辑
|
11月前
|
API 数据处理 开发者
获取淘宝分类详情:深入解析taobao.cat_get API接口
淘宝开放平台推出的`taobao.cat_get` API接口,帮助开发者和商家获取淘宝、天猫的商品分类详情。该接口支持获取类目列表、属性及父类目信息,通过指定分类ID(cid)实现精准查询,并提供灵活的参数设置和高效的数据处理。使用流程包括注册账号、创建应用、获取App Key/Secret、构造请求、发送并解析响应。示例代码展示了如何用Python调用此API。开发者可借此为电商项目提供数据支持。
|
9月前
|
机器学习/深度学习
阿里妈妈首提AIGB并实现大规模商业化落地,将在NeurIPS 2024正式开源Benchmark
阿里妈妈提出AI-Generated Bidding(AIGB)新范式及DiffBid生成式竞价模型,突破传统基于强化学习的自动竞价方法局限。AIGB将自动竞价视为生成问题,通过捕捉复杂依赖关系,提升长期规划和随机环境中的稳定性和效果。DiffBid基于条件扩散建模,灵活生成满足特定目标的竞价轨迹,显著提升GMV和ROI。实验结果表明,DiffBid实现了2.81%的GMV增长和3.36%的ROI增长。然而,生成式建模的复杂性也带来了训练和调优的挑战。 论文链接:https://arxiv.org/abs/2405.16141
382 9
|
消息中间件 存储 负载均衡
中间件注册与订阅
【7月更文挑战第1天】
291 2
|
存储 Go PHP
Go语言中的加解密利器:go-crypto库全解析
在软件开发中,数据安全和隐私保护至关重要。`go-crypto` 是一个专为 Golang 设计的加密解密工具库,支持 AES 和 RSA 等加密算法,帮助开发者轻松实现数据的加密和解密,保障数据传输和存储的安全性。本文将详细介绍 `go-crypto` 的安装、特性及应用实例。
630 0
|
消息中间件 存储 负载均衡
微服务与分布式系统设计看这篇就够了!
【10月更文挑战第12天】 在现代软件架构中,微服务和分布式系统设计已经成为构建可扩展、灵活和可靠应用程序的主流方法。本文将深入探讨微服务架构的核心概念、设计原则和挑战,并提供一些关于如何在分布式系统中实现微服务的实用指导。
515 2
|
机器学习/深度学习 PyTorch TensorFlow
Python实现深度学习学习率指数衰减的方法与参数介绍
学习率指数衰减提供了一种高效的动态调整学习率的手段,帮助模型在不同训练阶段以不同的学习速度优化,有利于提升模型性能和训练效率。通过合理设置衰减策略中的参数,可以有效地控制学习率的衰减过程,实现更加精确的模型训练调优。
608 0
|
XML 安全 Java
【分布式技术专题】「单点登录技术架构」一文带领你好好对接对应的Okta单点登录实现接口服务的实现落地
【分布式技术专题】「单点登录技术架构」一文带领你好好对接对应的Okta单点登录实现接口服务的实现落地
877 0
|
安全 数据库 数据安全/隐私保护
撞库攻击是什么?如何有效阻止撞库攻击?
通过采取这些防护措施,可以有效降低撞库攻击的成功几率,保护用户的账户和数据安全。
786 0
撞库攻击是什么?如何有效阻止撞库攻击?