基于simulink模拟固定翼无人机简化燃油燃烧仿真

简介: 基于simulink模拟固定翼无人机简化燃油燃烧仿真

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Brake specific fuel consumption (BSFC) is a parameter that reflects the efficiency of a combustion engine which burns fuel and produces rotational power (at the shaft or crankshaft). In automotive applications, BSFC is used to evaluate the efficiency of the internal combustion engines (ICE). The keyword “brake” is related to the use of a dynamometer (electrical brake) to measure the engine parameters (fuel mass flow rate, torque, etc.).

An internal combustion engine requires fuel and air to produce energy. The amount of fuel used is usually measured on a dynamometer, as a mass flow rate, in kilograms per second [kg/s]. This parameter can not be used to evaluate the efficiency of the engine because it is not obvious how much power we can extract from the fuel. Therefore by dividing the fuel mass flow rate [kg/s] to the engine output power [W], we obtain the brake specific fuel consumption [kg/J]:

⛄ 部分代码

clear

close all

clc


%% aero data

Sref=0.6 ;% m2


aero_UAV=xlsread('UAVdata.xlsx','A:C');

CL_uav=aero_UAV(:,1);

CD_uav=aero_UAV(:,2);


% polynomial for drag polar

DP=polyfit(CL_uav,CD_uav,2);

CD_fit=DP(1)*CL_uav.^2+DP(2)*CL_uav+DP(3);


%% propeller data

Dprop= 0.482 ;%m

J=xlsread('UAVdata.xlsx','P3:P16');


%% CP vs J coeff

p0=0.03840634;

p1=0.04503419;  %x

p2=-0.06173971; %x2

p3=-0.06297906; %x3


%% engine data

load engine_data.mat


[C,h]=contourf(xx,yy,Zeng,'LevelList',300:20:600);

clabel(C,h)

hold on

[C1,h1] =contour(xx,yy,Zeng,'LevelList',600:100:3000);

clabel(C1,h1);

xlabel('RPM')

ylabel('Engine torque')

⛄ 运行结果

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
风储微网虚拟惯性控制系统simulink建模与仿真
风储微网虚拟惯性控制系统通过集成风力发电、储能系统等,模拟传统同步发电机的惯性特性,提高微网频率稳定性。Simulink建模与仿真结果显示,加入虚拟惯性控制后,电压更平缓地趋于稳定。该系统适用于大规模可再生能源接入,支持MATLAB2022a版本。
|
1月前
|
传感器 算法
基于MPPT的风力机发电系统simulink建模与仿真
本课题基于最大功率点跟踪(MPPT)技术,对风力机发电系统进行Simulink建模与仿真。通过S函数实现MPPT算法,实时监测和调整风力发电机的工作状态,使其始终工作在最佳效率点,从而最大限度地利用风能,提高风力发电效率。系统包括风速传感器、发电机状态监测模块、MPPT控制器、发电机驱动系统及反馈回路,确保闭环控制的稳定性和准确性。
|
2月前
|
vr&ar C++
基于simulink的风轮机发电系统建模与仿真
本课题使用Simulink实现风轮机发电系统的建模与仿真,涵盖风速模型(基本风、阵风、阶跃风、随机风)、风力机模型及飞轮储能模块。采用MATLAB 2022a进行仿真,详细介绍了各风速成分的数学模型及其组合模型,阐述了风力机从风能捕获到电能输出的全过程,为风力发电系统的设计和优化提供了理论基础和技术支持。
|
2月前
|
vr&ar
基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画
本项目基于MATLAB2022a的Simulink平台,构建了四旋翼无人机的PID控制模型,实现了无人机升空、下降及再次升空的飞行仿真,并生成了VR虚拟现实动画。通过调整PID参数,优化了无人机的姿态控制性能,展示了无人机在三维空间中的动态行为。
|
6月前
|
算法
基于LQR控制算法的电磁减振控制系统simulink建模与仿真
该文主要介绍了基于LQR控制算法的电磁减振控制系统在MATLAB2022a中的Simulink建模与仿真。文章展示了系统仿真输出的控制器收敛曲线,并提供了相关图像来解释系统原理。LQR算法通过优化二次成本函数实现振动抑制,尤其适用于电磁减振系统,利用电磁执行机构动态调整力,高效抑制振动。文中附有关键模型和原理图。
|
7月前
|
数据可视化 算法
MATLAB Simulink 单相半波可控整流电路性能研究
MATLAB Simulink 单相半波可控整流电路性能研究
83 2
基于PI控制的PMSM永磁同步电机控制系统simulink建模与仿真
该文探讨了基于PI控制的PMSM永磁同步电机Simulink建模与仿真,采用矢量控制策略,不依赖Simulink内置模型。在MATLAB2022a环境下,建立了电机数学模型,简化了复杂的电磁关系。PI控制器用于实现电流解耦控制,提高动态响应。控制系统通过PI调节直轴和交轴电流,经坐标变换和PWM调制驱动电机运行,实现高性能闭环控制。
|
7月前
|
算法 新能源
【免费】虚拟同步发电机(VSG)惯量阻尼自适应控制仿真模型【simulink】
【免费】虚拟同步发电机(VSG)惯量阻尼自适应控制仿真模型【simulink】
|
7月前
|
算法 新能源
Simulink|【免费】虚拟同步发电机(VSG)惯量阻尼自适应控制仿真模型
Simulink|【免费】虚拟同步发电机(VSG)惯量阻尼自适应控制仿真模型
|
传感器 数据可视化
Simulink|电动汽车、永磁电动机建模与仿真
Simulink|电动汽车、永磁电动机建模与仿真
174 0