生成式智能体——来自NPC们的独立宣言

简介: 生成式智能体——来自NPC们的独立宣言

 新智元报道  

编辑:拉燕

【新智元导读】Q版西部世界!生成式智能体来袭,我们是人格独立的NPC!


游戏里的NPC都见过吧?

不管NPC是干嘛的,有任务的接任务,没任务的尬聊,他们共同的特点就是——翻来覆去就是那几句话。

原因也很简单,这些NPC还不够智能。

换句话说,传统的NPC都是先给他们安排好剧本,安排好话术,该到哪步就说哪句话。

而随着ChatGPT的出现,这些游戏角色的对话可以在只输入关键信息的前提下,自我生成。

这就是斯坦福和谷歌的研究者们在做的事——用人工智能创造出的生成式智能体。

生成式智能体怎么生成?


这玩意儿的机理其实很简单,用一张图就可以简单进行概括。

最左边的Perceive就像是最开始的输入,智能体开始接收各类信息。

而中间的大框框,就是最主要的部分了,这里揭示了生成式智能体是怎么「生成」内容的,并且自发地走到最后一步「Act」。

生成式智能体最主要的特点就是有个Memory Stream,也就是内存流。

就像上面提到的传统npc,他们的行为和言语都是规定好的,没有自由发挥的空间。

而如果想自由发挥,就必须有自己的「库」,这个「库」里有AI记下的日常所见、所听的事物,并加以思考,这样才能进一步「Act」。

AI必须得学习嘛。

而提取记忆、计划、反思的环节,就是AI处理记忆的环节。AI不光能记住每天发生了什么,还能反思这些事件,制定每一天的计划。

同时,由AI的行为所引起的新反馈,他们也会记住,并当成新的素材,继续展开新一轮的处理。

Observation就是每个角色对周遭环境以及人、事的观察,Reflection则是对这些观察到的现象的思考。

然后角色们再根据这些内容生成Plan。

一开始,他们先自己制定出大致的计划,然后慢慢细化。先是制定小时计划,再制定出5-15分钟的短期计划。

并且,角色还会根据周遭环境的变化修改各自的计划。完全模仿人类行为,谁不是一天到头疯狂修改自己的计划的呢。

这样,我们就看到了生成式智能体的魅力。

我们可以看到,完全体的生成式智能体(包含观察、思考、计划三部分)的表现要比缺少任何一种、两种的架构表现好得多。

可爱小人Emoji

在谷歌和斯坦福研究人员设计的场景下,一共有25个小AI人,生活在这么一张地图中。

研究人员一共设置了25个角色,并且给每个角色都设定了姓名和职业等基本信息。

比方说,John Lin是一个药店店员,十分乐于助人。他总是在思考如何让他的客户更方便地拿药。

生活方面,John和他的妻子Mei Lin一起生活,后者是一个大学教授。他们的儿子Eddy Lin正在学习音乐理论。

同时还建立了角色之间初始的关系网,比如John和他邻居的关系,对邻居的看法,以及和药店同事之间的关系,平时爱聊什么等等。

每一个角色都有这么一段预设的文字,初步勾勒出了角色框架,引发后续的交互。

而剩下的部分,就靠AI自己发挥了。

每个角色的行为都会由emoji表示,并且会在系统中用一句话概括。比如某某正在写日记,就会用来表示。

有一天,Isabella和Tom相遇。他们聊起了有关竞选的话题。

要知道,角色之间能使用完整清晰的自然语言进行交流。并且每个角色都能感知到附近的其他角色,并能根据各自的性格和人物关系来自行决定,是擦肩而过还是开始攀谈。

Isabella:「我还在想我该选谁。但我和Sam Moore聊过竞选的事。你对他是什么看法?」

Tom:「讲实话,我不是很喜欢Sam。我觉得他有点脱离咱们的社区,不会为咱们的利益最大化而考虑。」

而出于试验的目的,研究人员还可以进行干预。不过这种干预不同于传统的输入剧本。而是在一些分支的走向上稍微施加一点力量,余下的部分还是靠AI自己发挥。

而具体到每一天的日常,每一个角色都会有自己的「routine」,这个「routine」是预设的。

以下就是药房小哥John Lin的一天。而至于每天会发生什么新鲜事,就是最有意思的部分了。

最后,再让我们看看情人节这天AI之间发生了什么有趣的互动吧。

在情人节这天,研究人员给了两个角色Isabella和Maria一人一条预设信息,告诉Isabella她要举办一场派对,并告诉Maria她喜欢Klaus。

然后,两个角色就开始自己玩自己的了。

Isabella在地图中溜达,看见人就邀请他们来自己的派对。

这其中就包括Maria。Maria肯定也不会错过这个机会和Klaus相处,于是她找到Klaus,邀请他一同前往Isabella的派对。

Isabella邀请完人也没闲着,去咖啡厅装饰了场地,还请来了Maria帮忙。

上面这张图展现了这些AI相互之间的关系,以及由派对引发的交互。

然后一群AI就快快乐乐地在下午五点开始派对了。

下面这张图则是详细地展开了这场派对的举办是怎么由AI自发引导的。涉及到了记忆的提取、从对环境的观察中进行的反思,以及决策。

左侧是Isabella观察到的环境内容,比如闲置的冰箱、床、架子、书桌、衣柜等等,然后根据环境和要举办派对的意图,做出了装饰、邀请、设计派对等等决策。

如此一来,整个过程就显得非常饱满了。

科幻照进现实?


以上的场景看似简单好玩,但是越发展越能展现出不一样的力量。

Pete在推特上表示,这个成果未来可以应用在很多方面。

比如说应用在VR世界,有了这种生成式智能体充当npc,想必像西部世界里设想的场景不再会是遥不可及的。

「在西部世界中,每一个NPC都有自己的思想,性格,计划,以及人际关系。甚至,更多的东西都是自主生成的。」而由谷歌和斯坦福的研究者们做的这个玩意儿,就是个迷你的Q版西部世界。

参考资料:https://twitter.com/nonmayorpete/status/1645355225157615616 https://www.reddit.com/r/MachineLearning/comments/12hluz1/r_generative_agents_interactive_simulacra_of/

相关文章
|
人工智能 自然语言处理 文字识别
DeepMind首发游戏AI智能体SIMA:开启虚拟世界的智能探索之旅
【4月更文挑战第3天】DeepMind推出了SIMA,一种能在多个3D环境中执行语言指令的智能体,标志着AI在理解和互动虚拟世界上的进步。SIMA通过多样化的训练数据学习导航、操作、决策等技能,并结合预训练模型处理高维度输入输出。尽管在复杂任务上仍有提升空间,SIMA展现了正向迁移能力和潜力,为AI研究和未来机器人技术铺平道路。然而,仍需解决鲁棒性、可控性、评估方法及道德安全问题。
578 4
DeepMind首发游戏AI智能体SIMA:开启虚拟世界的智能探索之旅
|
人工智能 机器人 数据安全/隐私保护
【必看!】阿里云推出QWen-7B和QWen-7b-Chat,开放免费商用!
阿里云最近发布了两款大型开源模型QWen-7B和QWen-7b-Chat,这两款模型的参数规模达到了70亿,用户可以在Hugging Face和ModelScope上免费使用。尽管大型模型的热度近期有所下降,但阿里云选择开源模型来赢得用户的支持,并保持自身在竞争中的优势。这一举措也引起了人们的关注,因为不开源可能会导致信息泄露的风险。通过开源模型,阿里云既能满足用户需求,又能保持技术竞争力。
1787 0
 【必看!】阿里云推出QWen-7B和QWen-7b-Chat,开放免费商用!
|
编解码 监控 测试技术
优化OBS的推流设置以提高直播质量
优化OBS的推流设置以提高直播质量
2197 0
|
机器学习/深度学习 数据采集 人工智能
揭开大模型幻觉之谜:深入剖析数据偏差与模型局限性如何联手制造假象,并提供代码实例助你洞悉真相
【10月更文挑战第2天】近年来,大规模预训练模型(大模型)在自然语言处理和计算机视觉等领域取得卓越成绩,但也存在“大模型幻觉”现象,即高准确率并不反映真实理解能力。这主要由数据偏差和模型局限性导致。通过平衡数据集和引入正则化技术可部分缓解该问题,但仍需学界和业界共同努力。
452 4
|
人工智能 搜索推荐
Baichuan-NPC-Turbo:只需文字描述即可定制生成所需的角色
Baichuan-NPC-Turbo:只需文字描述即可定制生成所需的角色
881 0
|
供应链 关系型数据库 MySQL
MySQL的`FOR UPDATE`详解
MySQL的`FOR UPDATE`详解
1218 0
|
存储 Java
Java中的逻辑运算符详解
Java中的逻辑运算符详解
630 0
|
Java Spring
好疑惑!idea启动、spring boot、无法加载或找不到主类
好疑惑!idea启动、spring boot、无法加载或找不到主类
978 0
好疑惑!idea启动、spring boot、无法加载或找不到主类
|
机器学习/深度学习 编解码 人工智能
首篇BEV感知生成工作!BEVGen:从鸟瞰图布局生成环视街景图像
本文提出了BEVGen,这是一个条件生成式模型,它合成了一组真实且空间一致的环视图像,这些图像与交通场景的BEV布局相匹配。BEVGen结合了一种新颖的交叉视图转换和空间注意力设计,学习相机和地图视图之间的关系,以确保它们的一致性。BEVGen可以精确地渲染道路和车道线,以及在不同的天气条件和时间生成交通场景。
首篇BEV感知生成工作!BEVGen:从鸟瞰图布局生成环视街景图像
|
SpringCloudAlibaba Java 程序员
吹爆“Alibaba”!自研Spring全家桶全套全彩学习笔记(终极版)
Spring这个技术栈,在LZ心目中一直是最好的Java项目,没有之一。这玩意面试必考工作必用,是我们Java人的饭碗;它跟它后面诞生的一系列解决方案被我们亲切的成为Spring全家桶,如果你自诩是一名合格的Java程序员,这玩意一定要全部掌握(自己手写框架的大佬忽略此条)。