m基于混合高斯模型和帧间差分相融合的自适应视频背景提取算法matlab仿真

简介: m基于混合高斯模型和帧间差分相融合的自适应视频背景提取算法matlab仿真

1.算法仿真效果
matlab2013b仿真结果如下:

混合高斯模型背景提取:

49e0b570ba9765aa1a4ac14c2ba5f51b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
072d4e5b7a35ee089eb7ef42fedff44c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    利用混合高斯模型处理这段视频,黑车已经运动离开画面左下角时,左下角仍然有黑车,这种现象我们称为“鬼影”。其产生的原因是由于混合高斯模型是对图像每个像素建立模型,所以算法的更新速度跟不上物体的变化,产生了滞留情况,这就是“鬼影”

    如图所示,(a)中原始图像左下角的黑车静止,所以背景更新图像中左下角也有一个黑车;(b)中原始图像里的黑车早已运动,离开了左下角,但背景更新图像的左下角还有黑车,这就是“鬼影”;(c)也是,原始图像里黑车已经驶出画面,但背景更新图像的左下角还有黑车,这就是鬼影。

混合高斯模型和帧间差分相融合的自适应视频背景提取:

bbeb99b1e0ebded0bbe3a4dde357f252_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
e72383115e1ef114b250660662cf9611_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

通过对比可以看到,通过改进方案,可以得到较为清晰的视频背景。

   “混合高斯模型与帧差法相结合”的这种算法处理视频后,抽取其中三帧,其中(a)是原始图像中黑车静止在画面的左下角;(b)是原始图像中黑车不在左下角背景更新图像左下角红框里的“黑车鬼影”没有了原始图像中黑车已经驶出画面时,那么对应的背景更新图像左下角的“黑车鬼影”必须消失,这样才达到了改进的效果。

2.算法涉及理论知识概要
  在Stauffer等人提出的自适应混合高斯背景模型基础上,为每个像素构建混合高斯背景模型,通过融入帧间差分把每帧中的图像区分为背景区域、背景显露区域和运动物体区域。相对于背景区域,背景显露区中的像素点将以大的更新率更新背景模型,使得长时间停滞物体由背景变成运动前景时,被遮挡的背景显露区被快速恢复。与Stauffer等人提出的方法不同的是,物体运动区不再构建新的高斯分布加入到混合高斯分布模型中,减弱了慢速运动物体对背景的影响。实验结果表明,在有诸多不确定性因素的序列视频中构建的背景有较好的自适应性,能迅速响应实际场景的变化。

   混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。具体更新公式如下:

58d877c46c071233c9b6dc9c7f2c8e27_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6b7f3189cb6f4b74668a5cc96a557405_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
48b081ba61757b7227abfef9858d4db9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
96e229981280ed30af2e72ce7d81525a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
d3e597d5c2637814e328defaa5b18c88_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.MATLAB核心程序

FileName_AVI = 'Vedio\test.avi'; 
[Obj,frameNum_Original]     = get_AVI(FileName_AVI);
[pixel_original,pixel_gray] = vedio_op(Obj,frameNum_Original);
clear Obj;
for i = 1:frameNum_Original
    pixel_gray2(:,:,i)       = imresize(pixel_gray(:,:,i),[RR,CC]);
    pixel_original2(:,:,:,i) = imresize(pixel_original(:,:,:,i),[RR,CC]);
end
clear pixel_gray pixel_original;
disp('读取视频完毕...');
 
 
disp('正在进行高斯混合模型的仿真...');
for i = 1:RR/CK
    i
    for j = 1:CC/CK 
        [image_sequence2,background_Update2,Images02,Images22] = func_Mix_Gauss_Model_diff(TT,pixel_original2(CK*(i-1)+1:CK*i,CK*(j-1)+1:CK*j,:,:),frameNum_Original,CK,CK,K,Alpha,Rho,Deviation_sq,Variance,Props,Back_Thresh,Comp_Thresh,SHADOWS);   
        image_sequence(CK*(i-1)+1:CK*i,CK*(j-1)+1:CK*j,:,:)    = image_sequence2;
        background_Update(CK*(i-1)+1:CK*i,CK*(j-1)+1:CK*j,:,:) = background_Update2;
        Images0(CK*(i-1)+1:CK*i,CK*(j-1)+1:CK*j,:)             = Images02;
        Images2(CK*(i-1)+1:CK*i,CK*(j-1)+1:CK*j,:)             = Images22;    
    end
end
disp('高斯混合模型的仿真完毕...');
 
 
disp('正在显示效果...');
figure;
for tt = 1:frameNum_Original
    tt
    subplot(221)
    imshow(image_sequence(:,:,:,tt));
    title('原始图像');
    subplot(222)
    imshow(uint8(background_Update(:,:,:,tt)));
    title('背景图像更新');
    subplot(223)
    imshow(Images0(:,:,tt));
    title('运动目标检测');
    subplot(224)
    imshow(Images2(:,:,tt));
    title('运动目标检测去阴影');
    pause(0.001);
end
disp('显示效果完毕...');
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
272 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
206 2
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
189 8
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
168 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
158 0
|
2月前
|
存储 监控 并行计算
目标跟踪中常用点迹航迹数据关联算法的MATLAB实现
通过计算测量点与预测点之间的欧氏距离,选择最近邻点进行关联,适用于单目标跟踪场景。
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
226 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
163 6
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。