m基于simulink的六自由度高超声速飞行器内外环飞行控制器设计与仿真实现

简介: m基于simulink的六自由度高超声速飞行器内外环飞行控制器设计与仿真实现

1.算法仿真效果
matlab2022a仿真结果如下:
1.png
2.png
3.png
4.png
5.png
6.png
7.png

2.算法涉及理论知识概要

    高超声速飞行器是指飞行马赫数大于5的飞行器,它是一种近空间飞行器。“近空间”可简单理解为:现有飞机飞行的最高高度(约20Km)和卫星运行轨道的最低高度(约100Km)间的空域。近空间飞行器可定性描述为:能持久稳定运行于近空间执行特定任务的各种飞行器。近空间飞行器的发展涉及国家安全与和平利用空间,是目前国际竞相争夺空间技术的焦点之一,是综合国力的体现。近空间飞行器的出现将促生新的作战样式,改写联合作战理论,并对未来技术局部战争产生重大影响。
   高超声速飞行器与常规的飞行器相比其整体布局采用机身发动机一体化设计,这使得各个子系统之间具有更强的耦合性和非线性。为了满足高超声速飞行器在复杂的飞行条件下仍然拥有稳定的飞行性能和良好的飞行品质,必须采用全新的控制手段。

     高超声速飞行器是指飞行马赫数大于5的飞行器,它是一种近空间飞行器。“近空间”可简单理解为:现有飞机飞行的最高高度(约20Km)和卫星运行轨道的最低高度(约100Km)间的空域。高超声速飞行器与常规的飞行器相比其整体布局采用机身发动机一体化设计,这使得各个子系统之间具有更强的耦合性和非线性。为了满足高超声速飞行器在复杂的飞行条件下仍然拥有稳定的飞行性能和良好的飞行品质,必须采用全新的控制手段。

4d3d957329a886d45862f1127a6d7976_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   上面五个式子之间呈强非线性耦合关系,任何变量的改变都将引起其它量的变化,从而导致整个系统的状态发生改变,因此,需要设计非线性控制器来实现解耦协调控制。多平衡点非线性解耦控制方法,基于的是经典反馈控制理论,采用内外环结合的设计思想,具体为:在给定的飞行段内,控制器的结构是相同的,理论上对于某一飞行段,存在着无数个飞行平衡点,应该为每一个平衡点,选取一组控制参数,但实际设计过程中,只需要选取具有典型意义的平衡点来进行研究,得到相应的控制参数,并在飞行段内基于这些参数进行插值计算,即可现实高超声速飞行器多平衡点非线性解耦控制。 

55d17e3f20ae05529b13baf8228e3313_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   如上图中的结构可以看到,高超声速飞行器控制系统主要包括飞行高度控制和飞行速度控制两部分,飞行高度控制系统是以姿态控制作为控制内环,以达到稳定姿态的目的。而外环采用的是基于高度和高度微分信号的反馈控制;飞行速度控制系统是通过改变发动机推力来控制速度,并在设计过程中结合了姿态信号,以保证速度调整初始阶段的稳定性。

0e296e7013b255a9cfbc85b880254c4a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   由于高超声速飞行器的飞行和推进系统之间采用一体化设计,该设计方法引起的耦合作用对飞行动态特性和发动机动态特性都有影响,而重点在于飞行控制,故只考虑发动机对飞行动态特性的影响。那么对于一个平衡点,高超声速飞行器纵向线性模型为 

0e296e7013b255a9cfbc85b880254c4a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   高超声速飞行器控制系统主要包括飞行高度控制和飞行速度控制两部分,飞行高度控制系统是以姿态控制作为控制内环,以达到稳定姿态的目的。而外环采用的是基于高度和高度微分信号的反馈控制;飞行速度控制系统是通过改变发动机推力来控制速度,并在设计过程中结合了姿态信号,以保证速度调整初始阶段的稳定性。 

3.MATLAB核心程序

00cde6480da3dee27f9c3b2a5badcd4f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

% x'= Ax+Bu
% y = Cx+Du
A=[-1.4225e-13  -9.9688  -16.641   0       -5.2784e-22; 
    9.7346e-7    0        0.086872 0        5.8625e-10;  
   -9.7346e-7    0       -0.086872 1       -5.8625e-10;
   -1.6167e-15   0        0.78031 -0.076265 0;
   -1.6645e-16   4525.6   0        0        0];
%--------------------------------------------------------
B=[16.219      0 ;
    6.1181e-5  0 ;
    -6.1181e-5 0 ;
    0          3.6619;
    0          0];
%--------------------------------------------------------
C=[1 0 0 0 0;
   0 0 0 0 1];
%--------------------------------------------------------
D=0;
%=================================================================
..................................................................
  
C1 =[1 0 0 0 0;
     0 1 0 0 0;
     0 0 1 0 0;
     0 0 0 1 0;
     0 0 0 0 1;
     0 0 0 0 0;
     0 0 0 0 0];
 
r    = 1.4;              
R3   = B*B'-(1/r^2)*B1*B1';
Q3   = C1'*C1
[p31,p32,lamp,perr,wellposed,P3] =aresolv(A,Q3,R3)
K3   = B'*P3;  
A1   = A-B*K1         % 原系统
A2   = A-B*K3         % H无穷设计A
y1   = ss(A,B,C,D)   % 原系统
y2   = ss(A2,B1,C,D)% H无穷设计后系统
figure;
bode(y1,'b');hold on
bode(y2,'r')    
grid on
title('原系统伯德图(蓝) & H无穷设计后原系统伯德图(红)');
xlabel('频率');
ylabel('相位');
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
889 0
|
存储 人工智能 算法
AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)
AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)
1594 0
|
3月前
|
数据采集 存储 人工智能
拆解AI-Agentforce企业级智能体中台:如何让企业AI落地从“噱头”到“实效”
在GDMS峰会上,迈富时集团尹思源指出41.3%中国企业尚未布局AI Agent,已应用者亦陷“Demo化、孤岛化”困局。其发布的AI-Agentforce智能体中台,以“冰山模型”重构架构,打通认知、价值、能力三重鸿沟,覆盖内容、获客、销售、陪练、分析五大场景,助力企业实现AI从“工具”到“数字员工”的全链路协同升级。
|
关系型数据库 MySQL Windows
mysql彻底卸载干净的5个步骤,超多图超详细保姆级教程最新教程新手小白轻松上手
mysql彻底卸载干净的5个步骤,超多图超详细保姆级教程最新教程新手小白轻松上手
26935 2
|
10月前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
4575 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
并行计算 PyTorch 编译器
|
算法 调度 决策智能
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图
这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。
|
算法 C语言
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现
客观评价方法中的一种,亦称为理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最优解和最劣解,通过计算每个方案到理想方案的相对贴近度,即靠近止理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现
创建线程提示SCB_CFSR_BFSR:0x04 IMPRECISERR 错误
创建线程提示SCB_CFSR_BFSR:0x04 IMPRECISERR 错误
551 0
创建线程提示SCB_CFSR_BFSR:0x04 IMPRECISERR 错误
|
SQL 算法 安全
【数据库SQL server】数据模型:对现实世界的抽象
【数据库SQL server】数据模型:对现实世界的抽象
257 0