m基于matlab的图像方块编码仿真,输出编码后PSNR图像质量指标

简介: m基于matlab的图像方块编码仿真,输出编码后PSNR图像质量指标

1.算法仿真效果
matlab2022a仿真结果如下:
cc792f408c1c267f7ce4fb6ce0bc79ea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   BTC编码又称方块编码,是一种有效,快速,简单的有损灰度图像数字压缩技术,具有性能高,信道容错力高等特点,在实时图像传输方面具有很高的应用价值,由美国普渡大学的Mitchell和Delphi教授提出.使用Mat-lab实现BTC编码.​

   方块编码也叫方块截断编码(block truncation coding,简称BTC)是静态图像编码中的一种, 其原理是把一幅图像分为大小为N×N的子像块(简称子块),由于小块内各相邻像素间具有亮度互相近似的相关性,于是只选用两个适当的亮度来近似代表小块内各像素原来的亮度,然后指明子块内的各像素分别属于哪个亮度。静态图像编码是研究怎样利用图像固有的统计特性(信源特性),以及视觉的生理学、心理学特性(信宿特性),或者记录设备(如普通照相底片)和显示设备(如电视、监示器)等的特性,经过压缩编码从原始图像信息中提取出有效信息,尽量去掉那些无用的冗余信息,以便高效率地进行图像的数字传输或数字存储;而在复原时仍能获得与原始图像相差不多的复原图像,即保持图像信息中的有效信息。

4e03024924980e4a7efc25e4ef85ceb3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    方块编码(英语:BlockTruncationCoding,缩写:BTC)是一种用于灰度图像的有损数据压缩算法。这种算法将图像分为以方块为单位,在每一方块中,在保持原有平均数和标准方差(即保持二阶矩)的同时,减少灰度等级,以达到压缩的目的。方块编码(英语:BlockTruncationCoding,缩写:BTC)是一种用于灰度图像的有损数据压缩算法。这种算法将图像分为以方块为单位,在每一方块中,在保持原有平均数和标准方差(即保持二阶矩)的同时,减少灰度等级,以达到压缩的目的。方块编码被认为是纹理压缩算法DXTC的前身;但在DXTC出现之前很久,方块编码已就被引入彩色图像的压缩,即色彩单 

ee95df635f526db9f111275ff01f2c15_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3aa54c3056196190cff97ae240e6fd41_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

global  M;                                  %图像尺寸
global  N;                                  %图像尺寸
 
handle=get(gcf,'userdata');           
set(gcf,'pointer','watch');           
 
if  Select==1                             
    oldbuf=ReadImage(handle);               
else
 switch block                          %选择n*n子菜单
    case 1                             % 2×2 方块
        n=2;
        subplot(2,2,2);               %确定显示区域
        str='2×2 方块编码图像'; 
       
    case 2                             % 4×4方块 
        n=4;
        subplot(2,2,3);             
        str='4×4 方块编码图像';
    case 3                             % 8×8方块 
        n=8;
        subplot(2,2,4);              
        str='8×8 方块编码图像';
 end 
  code(n,oldbuf)
                
end 
set(gcf,'pointer','arrow');               
%-------------------------------------------------------------------------
function  oldbuf=ReadImage(handle);
% *************************************************************************
% 函数名称:                    
%    ReadImage()         
% 说明:
%    打开对话框,读入原图像。                   
% *************************************************************************
[FileName,PathName]=uigetfile({...
       '*.BMP;*.JPG;*.JPEG;*.JPE;*.GIF;*.TIF;*.PNG';});
                                       
    if isequal(FileName,0) | isequal(PathName,0)
        FullFileName=CurrentFullFileName;       
    else                                        
        FullFileName=strcat(PathName,FileName); 
        subplot(2,2,1);                         
        str='原图像';                          
        oldbuf=imread(FullFileName);           
        imshow(oldbuf);                       
        title(str);                             
        set(handle(2),'Enable','on');          
        set(handle(3),'Enable','on');           
        set(handle(4),'Enable','on');           
    end 
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
272 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
132 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
118 0
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
189 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
132 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8

热门文章

最新文章