基于无核漂移聚类算法和PCA算法实现点云精简附matlab代码

简介: 基于无核漂移聚类算法和PCA算法实现点云精简附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

根据建筑物在高度方向截面上的点云数据必定位于其轮廓线的原理,提出基于聚类平面特征的点云数据精简算法.该算法无需对扫描对象进行表面重构,而是在保持建筑物高度方向数据精度的前提下,对点云数据分层聚类简化,保留满足条件的特征点,删除其余的点.通过实例证明该算法可以在保持建筑物外形特征的同时,达到较高的精简比率.

⛄ 部分代码

clc

clear

close all

tic

% mydir=uigetdir('d:','选择一个目录');

mydir='.\bunny';

DIRS=dir(fullfile(mydir,'*.ply'));

name={DIRS.name}';

p=7;

[~,P] = ply_read(fullfile(mydir,DIRS(p).name),'tri');

figure,plot3(P(1,:),P(2,:),P(3,:),'.');

axis equal

% figure;

% x=P(1,:);

% y=P(2,:);

% z=P(3,:);

% c=z+1;

% scatter3(x,y,z,0.1,c,'filled');

% colorbar

title('原始点云');

[~,n]=size(P);

k=500;

[idx0,~]=knnsearch(P',P','k',k+1);

idx0=idx0';

[nor,cur] = norcur(P, 8);

sign=zeros(1,n);

cidx=zeros(1,n);

for i=1:n

   if ~sign(i)

       sign(1,idx0(2:end,i))=1;

       cidx(i)=1;

   end

end

cent=P(:,cidx>0);%聚类中心

figure,plot3(cent(1,:),cent(2,:),cent(3,:),'.');

axis equal

% figure;

% x=P(1,:);

% y=P(2,:);

% z=P(3,:);

% c=z+1;

% scatter3(x,y,z,0.01,c,'filled');

% colorbar

title('聚类中心种子');

[idx,C]=kmeans(P',[],'start',cent');

figure,plot3(C(:,1),C(:,2),C(:,3),'.');

% figure;

% x=C(:,1);

% y=C(:,2);

% z=C(:,3);

% c=z+1;

% scatter3(x,y,z,3,c,'filled');

% colorbar


% view(2)

axis equal

title('Kmeans聚类中心');

jingjian=zeros(3,n);

pointer=0;

% jingjian=[];

%对每一个聚类簇,建立高斯球,在其中进行自适应漂移聚类


for i=1:size(C,1)

   p=P(:,idx==i);

   nor_i=nor(:,idx==i);

   bandwidth=pi./30;

   [data2cluster,numClust] = mymeanshift1(nor_i,bandwidth);

   for j=1:numClust

       clust=p(:,data2cluster==j);

       pointer=pointer+1;

       jingjian(:,pointer)=mean(clust,2);

   end

end

jingjian(:,pointer+1:end)=[];


figure,plot3(jingjian(1,:),jingjian(2,:),jingjian(3,:),'.');

axis equal

title('精简后的点云')

toc

⛄ 运行结果

⛄ 参考文献

[1] 王茹, 周明全, 邢毓华. 基于聚类平面特征的三维点云数据精简算法[J]. 计算机工程, 2011, 37(10):4.

[2] 曹晓叶, 王知衍, 梁英宏,等. 基于均值漂移聚类的点模型简化方法[J]. 计算机应用, 2008, 28(4):3.

[3] 王甲福, 秦昊. 基于八叉树的均值聚类点云精简方法[J]. 自动化应用, 2019(4):3.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
13天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
9天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
6天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
10天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
9天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
23 8