基于PSO粒子群算法优化RBF网络的数据预测matlab仿真

简介: 基于PSO粒子群算法优化RBF网络的数据预测matlab仿真

1.算法描述

  1985年,Powell提出了多变量插值的径向基函数(RBF)方法。径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也可以是到任意一点c的距离,c点称为中心点。任意满足上述特性的函数,都可以叫做径向基函数。一般使用欧氏距离计算距离中心点的距离(欧式径向基函数)。最常用的径向基函数是高斯核函数。RBF神经网络只有三层,即输入层、隐藏层、输出层。RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低(高斯函数)。RBF网络的输出与部分调参数有关,譬如,一个wij值只影响一个yi的输出,RBF神经网络因此具有“局部映射”特性。

d8ea71cf17ff2ae1dfa395ebd156f621_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f2b40d0e2d66704646b73831f5fb4b49_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  PSO中,每个优化问题的解都是搜索空间的一只鸟,我们称之为“粒子”。所有的粒子都有一个被优化的函数决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

   PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解,在每一次迭代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值。另一个极值是整个种群目前找到的最优解,这个极值是全局机制。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
    PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值(pbest和gbest)”来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

5f7232440e57fb2344dddb21e1d8600c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5bfacff500944f7a93bb2fad20d36854_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

对于公式(1):

公式(1)中的第一部分称为记忆项,表示上次速度大小和方向的影响;
公式(1)中的第二部分称为自身认知项,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;
公式(1)中的第三部分称为群体认知项,是一个从当前点指向种群最好点的矢量,反映了粒子间的协调合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

706be5be587b28f884ab760599d8c602_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

综上所述,标准PSO算法流程:
初始化一群微粒(群体规模为N),包括随机位置和速度;
评价每个微粒的适应度;
对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;
对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;
根据公式(2)、(3)调整微粒的速度和位置;
未达到结束条件则转到第二步。
迭代终止条件根据具体问题一般选为最大迭代次数Gk或微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

2.仿真效果预览
matlab2022a仿真结果如下:

aee4233f8a7886e0a96aea57217ded74_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
939a6093542a3b611ae7d7f51c62bc25_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
e46bdbca5f60e52bb1414f7dc1fbab69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

BsJ = 0;
 
%根据初始化的种群计算个体好坏,找出群体最优和个体最优
for s = 1:m
    indivi = pop(s,:);
    [indivi,BsJ] = func_obj(indivi,BsJ);
    Error(s) = BsJ;
end
 
[OderEr,IndexEr] = sort(Error);
Error;
Errorleast = OderEr(1);
for i = 1:m
    if Errorleast == Error(i)
        gbest = pop(i,:);
        break;
    end
end
ibest = pop;
 
 
for kg = 1:G
    kg
    for s = 1:m;
%个体有4%的变异概率        
        for j = 1:n
            for i = 1:m
                if rand(1)<0.04
                    pop(i,j) = rands(1);
                end
            end
        end
%r1,r2为粒子群算法参数        
        r1 = rand(1);
        r2 = rand(1);
 
%个体和速度更新        
        V(s,:) = w*V(s,:) + c1*r1*(ibest(s,:)-pop(s,:)) + c2*r2*(gbest-pop(s,:));
        pop(s,:) = pop(s,:) + 0.3*V(s,:);
        
        for j = 1:3
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
        for j = 4:9
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
        for j = 10:12
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
 
%求更新后的每个个体适应度值        
        [pop(s,:),BsJ] = func_obj(pop(s,:),BsJ);
        error(s) = BsJ;
%根据适应度值对个体最优和群体最优进行更新        
        if error(s)<Error(s)
            ibest(s,:) = pop(s,:);
            Error(s) = error(s);
        end
        if error(s)<Errorleast
            gbest = pop(s,:);
            Errorleast = error(s);
        end
    end
    
    Best(kg) = Errorleast;
end
plot(Best,'-bs',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','r',...
    'MarkerFaceColor',[0.7,0.7,0.4]);
 
save net.mat gbest;
相关文章
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
270 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
204 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
226 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
163 6
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
188 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
267 14

热门文章

最新文章