m基于shepp-Logan模型和滤波反投影的医学图像多尺度全局重建和局部重建matlab仿真

简介: m基于shepp-Logan模型和滤波反投影的医学图像多尺度全局重建和局部重建matlab仿真

1.算法描述

    从投影重建物体的截面图像是图像处理中非常重要的技术此技术在物体的无损伤性检测其内部缺陷的应用中能起很大作用从投影重建图像的技术早在20世纪中期就已经制成常规医疗诊断设备的商品1917年奥地利数学家J.Radon发表的论文证明了二维物体或三维物体可以从许多投影来重建其内部数据英国的EMI公司中央研究所1972年由G.N.Hounsfield设计出X射线断层分析仪此后于1974年5月在加拿大蒙特利尔第一次国际会议上正式命名为Computerized Tomography简称XCT或CT当时这台仪器可以获得人体的各个部位鲜明清晰的断层图像另外美国塔夫茨大学A.M.Cormack在1963年就提出了精确的非迭代的级数展开法用于图像重建的算法中并指出在诊断医学中图像重建的可能性以上两人由于对CT研制工作的开创性贡献获得了1979年诺贝尔医学奖。

   计算机层析成像技术(Computed Tomography,简称CT)是利用具有一定能量的射线源(X射线,γ射线)对物体进行断层扫描,并根据物体外部的探测器获得的物理量(指物质对射线的衰减系数)生成的一维投影数据,通过特定的重建算法,得到所扫描断层的二维图像。CT断层图像具有无影像重叠、空间和密度分辨率高、可直接进行数字化处理等优点,通过近十几年的发展已成为非接触无损检测的主流技术,是关键部件检测、机械仿型设计、安全检查等方面强有力的手段,并广泛应用于航空、航天、机械、汽车、船舶、公安等领域。此外,在医学领域,医用CT机已成为疾病诊断的重要辅助工具,对病灶的位置及病变程度的良好再现已使其成为医学影像领域里的主要医疗器械。CT机有三个组成部分。一是数据采集系统,二是图像重建(主要是图像重建算法),三是图像后处理及显示系统。CT图像重建算法主要分为两类,即变换法和级数展开法。变换法包括滤波反投影算法、傅立叶变换法以及ρ滤波法(rho-filtered layergrams),小波变换法;级数展开法主要是代数重建算法。滤波反投影是比较常用的变换算法,它具有速度快,空间和密度分辨率好的优点。

   滤波反投影法是目前CT图像重建领域使用得最为广泛的一种算法,其有效性和准确性也在临床上得到了验证。

9238b013cb4c9d3f3a6b1fcc0311a7f7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 通常在计算机中,采用的离散反投影算法,因此离散情形下的卷积反投影算法可以如下描述:

2435175573d3d4c2587ffc511dee4c08_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   其中O(x,y)代表原始图像,R(x,y)代表重建图像。当然孤立地去看相对误差并不是一个好的衡量标准,它必须同人们的视觉评估结合起来进行考虑。 

shepp-Logan模型:

    用S-L头模型进行计算机仿真研究的主要好处之一是可以获得该模型投影数据的解析表达式。一个中心位置在原点且未经旋转的椭圆,其长轴与X轴重合,短轴与Y轴重合。假设椭圆内的密度为r、椭圆外密度为零,则该椭圆图像可用以下方程表示:

1996dba716d4379891155f9a90431d56_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

式中A,B分别为椭圆长轴与短轴的长度。

6ab7983e2f589335998a1aed48dd32dc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    在研究从投影重建图像的算法时,为了比较客观的评价各种重建算法的有效性,人们常选用公认的Sheep-Logan 头模型作为研究对象。该模型由10个位置、大小、方向、密度各异的椭圆组成,象征一个脑断层图像。

该模型的主要参数如下表所示:

de9b2f30a792ddb4ff5482dc09848a2d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

多尺度全局重建算法计算流程:

586a9fcc803ddc419f7d0ccb11c4a172_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.仿真效果预览
matlab2022a仿真结果如下:

9dd9a1f0feb4ae8c86ce249a848c11c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4638f91a03108dd03379b42b8ba46eea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5921fd914e56382002cf53d387d26ca5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
daacf522ca5713588d703ac58e8500ac_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
17a8eb4c7de5b936a36ab0ce4aab1ec9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
a85571ada69627481929974571ca07ca_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
39fe355fd7b79f63e285b749d00646d8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1c20a1b8903661d174b0cf7e2a35ff03_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

 
n = size(PR,1);
sideSize = n;
a = 1;
[Length, Count] = size(PR);
w = [-pi:(2*pi)/Length:pi-(2*pi)/Length];
 
rn1 = abs(2/a*sin(a.*w./2));
rn2 = sin(a.*w./2);
rd = (a*w)./2;
r = rn1*(rn2/rd)^2;
 
f = fftshift(r);
for i = 1:Count
        IMG = fft(PR(:,i));
        fimg = IMG.*f';
        g(:,i) = ifft(fimg);%利用FFT,IFFT进行滤波
end
filtPR= real(g);
............................................................
I=phantom(256);  %生产头部模型图
figure(1);
imshow(I);       %显示图像
IMG=double(I);   %双精度显示
[cod_a,cod_h,cod_v,cod_d,map]=wtest(IMG);%一层小波变换
figure(2);
subplot(221)%显示分解系数1
imshow(cod_a,map);
subplot(222)%显示分解系数2
imshow(cod_h,map);
subplot(223)%显示分解系数3
imshow(cod_v,map);
subplot(224)%显示分解系数4
imshow(cod_d,map);
Z1=idwt2(cod_a,cod_h,cod_v,cod_d,'db1');%重建
figure(3);
imshow(Z1,map);
for i=1:256
    for j=1:256
        
        error(i,j)=(I(i,j)-Z1(i,j))^2/I(i,j)^2;%误差求解
    end
end
for i=1:256
    for j=1:256
        if I(i,j)==0
        error(i,j)=255;    
        end
       
    end
end
for i=1:256
    for j=1:256
        if error(i,j)>255;
        error(i,j)=255;    
        end
       
    end
end
相关文章
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
163 6
|
3月前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
244 2
|
3月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
493 5
|
3月前
|
传感器 机器学习/深度学习 编解码
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
142 3