一维CNN,二维CNN以及三维CNN的训练模型matlab仿真

简介: 一维CNN,二维CNN以及三维CNN的训练模型matlab仿真

1.算法描述

   卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一  。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”   。
   对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络 ;在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域。
   卷积神经网络仿造生物的视知觉(visual perception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-like topology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(feature engineering)要求 。

253cf52ee2fe65816f02a67eddff69fd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

图中的输入的数据维度为8,过滤器的维度为5。与二维卷积类似,卷积后输出的数据维度为8−5+1=48−5+1=4。

如果过滤器数量仍为1,输入数据的channel数量变为16,即输入数据维度为8×168×16。这里channel的概念相当于自然语言处理中的embedding,而该输入数据代表8个单词,其中每个单词的词向量维度大小为16。在这种情况下,过滤器的维度由55变为5×165×16,最终输出的数据维度仍为44。

如果过滤器数量为nn,那么输出的数据维度就变为4×n4×n。

一维卷积常用于序列模型,自然语言处理领域。

0db1d543085d7b5d0a1c266e0dd8d065_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

图中的输入的数据维度为14×1414×14,过滤器大小为5×55×5,二者做卷积,输出的数据维度为10×1010×10(14−5+1=1014−5+1=10)。

上述内容没有引入channel的概念,也可以说channel的数量为1。如果将二维卷积中输入的channel的数量变为3,即输入的数据维度变为(14×14×314×14×3)。由于卷积操作中过滤器的channel数量必须与输入数据的channel数量相同,过滤器大小也变为5×5×35×5×3。在卷积的过程中,过滤器与数据在channel方向分别卷积,之后将卷积后的数值相加,即执行10×1010×10次3个数值相加的操作,最终输出的数据维度为10×1010×10。

以上都是在过滤器数量为1的情况下所进行的讨论。如果将过滤器的数量增加至16,即16个大小为10×10×310×10×3的过滤器,最终输出的数据维度就变为10×10×1610×10×16。可以理解为分别执行每个过滤器的卷积操作,最后将每个卷积的输出在第三个维度(channel 维度)上进行拼接。

二维卷积常用于计算机视觉、图像处理领域。

43076259b35bdaa327549e723a939ac9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这里采用代数的方式对三维卷积进行介绍,具体思想与一维卷积、二维卷积相同。

假设输入数据的大小为a1×a2×a3a1×a2×a3,channel数为cc,过滤器大小为ff,即过滤器维度为f×f×f×cf×f×f×c(一般不写channel的维度),过滤器数量为nn。

基于上述情况,三维卷积最终的输出为(a1−f+1)×(a2−f+1)×(a3−f+1)×n(a1−f+1)×(a2−f+1)×(a3−f+1)×n。该公式对于一维卷积、二维卷积仍然有效,只有去掉不相干的输入数据维度就行。

三维卷积常用于医学领域(CT影响),视频处理领域(检测动作及人物行为)。

2.仿真效果预览
matlab2022a仿真结果如下:

c2113af8615c84916979e9c9d8fdd074_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2196c89d5d52b065faa42bc171ccae1b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5c60d689ce5cfa7d7c716101672d1b20_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

%% Define Network Architecture
% Define the convolutional neural network architecture.
layers = [
    imageInputLayer([22 5 3]) % 22X5X3 refers to number of features per sample
    convolution2dLayer(5,16,'Padding','same') % 5x5 filtr is used, u can try 3x3 filtr also
    reluLayer % activation function
    % i have not used any pooling layer here, since small data size
    % if u giving big data use pooling layer
    % pooling layer reduces size of the matrix
    fullyConnectedLayer(384) % 384 refers to number of neurons in next FC hidden layer
    fullyConnectedLayer(384) % 384 refers to number of neurons in next FC hidden layer
    fullyConnectedLayer(2) % 2 refers to number of neurons in next output layer (number of output classes)    
    softmaxLayer
    classificationLayer];
.............................................................
net = trainNetwork(trainD,targetD',layers,options);
predictedLabels = classify(net,trainD)'
相关文章
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
580 0
|
3月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
268 0
|
4月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
198 0
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
315 7
|
6月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
11月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
463 10