m分别使用BP神经网络和GRNN网络进行时间序列预测matlab仿真

简介: m分别使用BP神经网络和GRNN网络进行时间序列预测matlab仿真

1.算法描述

    广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

   GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

86ded1c091beb4987fc9891f53bbbd0e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

4.输出层输出是第二个节点除以第一个节点。

    在GRNN神经网络中,一旦确立了学习样本数据后,只需要调整一个参数“光滑因子”即可确定其网络结构和权值,因此训练GRNN网络要比传统的神经网络更加便捷。所以选择GRNN。

————————————————

   BP神经网络的网络层包括输入层,隐含层和输出层三个网络层次,其基本结构如下图所示: 

aa692a278ad320c09ab98af5de76f77c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于三层网络结构的BP神经网络具有较为广泛的应用场合和训练效果。

    在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。

————————————————

2.仿真效果预览
matlab2022a仿真结果如下:

e9ed27ae831d221cbdd9c567391b7e18_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7eeab723dec109b34d1d343dbf95fa41_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

可以看到,蓝色的是原始的数据,红色的我们的预测输出,前面几个年份,由于有已知数据,所以可以对比,可以看到,BP神经网络会存在的一定的误差。而GRNN则误差非常小。

误差具体数值,新改的程序有输出的,结果如下:

BP:

aba6261aeccd218ec4276dfb90d10226_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

GRNN:

06e2cda5117aa0b358da253514b2d9ca_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

因此,通过上述过程可知,GRNN神经网络具有更好的预测结果。

3.MATLAB核心程序

 
%GRNN神经网络训练
char    = [D]';
T       = [SAFE];
Net     = newgrnn(char,T,25);
save Grnn.mat Net;
 
%%
%通过拟合的方法,得到未来的指标的数据
X0=Time';
%设置预测年份
X1=[Time,2016,2017,2018,2019,2020];
 
Y1=D(:,1);
Y2=D(:,2);
Y3=D(:,3);
Y4=D(:,4);
Y5=D(:,5);
Y6=D(:,6);
Y7=D(:,7);
Y8=D(:,8);
Y9=D(:,9);
Y10=D(:,10);
Y11=D(:,11);
Y12=D(:,12);
Y13=D(:,13);
Y14=D(:,14);
Y15=D(:,15);
 
%开始拟合
p=polyfit(X0,Y1,5);Y1_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y2,5);Y2_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y3,5);Y3_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y4,5);Y4_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
 
p=polyfit(X0,Y5,5);Y5_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y6,5);Y6_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y7,5);Y7_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y8,5);Y8_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
p=polyfit(X0,Y9,5);Y9_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y10,5);Y10_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y11,5);Y11_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y12,5);Y12_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
p=polyfit(X0,Y13,5);Y13_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y14,5);Y14_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y15,5);Y15_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
相关文章
|
3月前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
232 15
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
243 2
|
3月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
493 5
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
327 0
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)

热门文章

最新文章