基于隶属度函数模糊CMAC神经网络算法matlab仿真

简介: 基于隶属度函数模糊CMAC神经网络算法matlab仿真

1.算法描述

   CMAC神经网络具有小脑的机能,因而,被广泛应用于机器人的运动控制。或者反过来说,正是为了机器人的运动控制,Albus构造了CMAC神经系统,以模拟脊椎动物的小脑机能。 正如Albus所说的:“然而,对我来说,CMAC最重要的特征是,它提供了一种认识和理解脑计算的途径,导致了一系列关于智能系统积木的重要见解。”为此,Albus又称CMAC神经网络为小脑算术计算模型(Cerebellar Model ArithmeTIc Computer, CMAC)。

   泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。 学习的目的是学到隐含在数据背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出。CMAC网络中,若两个输入向量相近,则他们所触发的神经元有重叠,距离越近,重叠越多;若两个输入向量相距较远,则它们触发的神经元没有重叠。因此CMAC网络具有局部泛化能力,它的泛化能力源自于它的网络结构本身。

    影响CMAC泛化精度的主要因素有:训练精度、泛化常数和样本点选择。对于一个神经网络来说,泛化能力越强,意味着经过样本点训练后,对于样本集附近的非样本点的输入,网络输出与期望输出间的误差越小。

1)CMAC是局部逼近神经网络,只对输入空间的小部分范围进行训练,只有相应小部分的几个权值调节神经网络的输出,因此对于每次的输入输出数据需要调整的权值很少,学习速度比全局神经网络快,更能符合实时控制的要求。
2)CMAC具有较强的输入和输出的映射能力,并且可以根据不同的精度要求来逼近任意类型函数。
3)CMAC具有局部泛化能力,对具有同一规律的学习集以外的数据,经过训练,网络也能给出合适的输出。
4)CMAC采用查表寻址方式,易于计算机编程实现,网络形式简单,在线计算速度快。

2.仿真效果预览
matlab2022a仿真结果如下:

ba1ad9c42177230365d932c66aed6ce2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0744a9157b450de03737dc0f14433a85_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
abbc8f47a3196fe4e995ea62c0041946_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

y=y1_train;%因变量y
 
min_in=min(t);%输入自变量最小值
max_in=max(t);%输入自变量最大值
n=numel(t);%自变量的位数
 
size_n=360;%量化等级,越大精度越高
 
s=[1:size_n];%S空间,输入量化后的离散空间
 
train_num=180;%用于训练的样本个数
 
maxgen=50;%最大迭代次数
 
mse=zeros(1,maxgen);%均方误差向量
gen=0;%实际迭代次数
eta=1.0;%学习率η
error_goal=0.00001;%误差精度要求
A_star=6;%每个状态对应的关联单元个数
common_unit=5;%相邻关联组有相同关联单元个数
a_num=size_n*A_star-(size_n-1)*common_unit;%关联单元总数
a=ones(1,a_num);% a 向量
w=zeros(1,a_num);% 权值向量
 
% 获取训练样本 的输入和输出
train_in=zeros(1,train_num);%训练样本输入
train_out=zeros(1,train_num);%训练样本输出
 
for i=1:train_num
    train_in(i)=t(floor((i-1)*n/train_num+1));
    train_out(i)=y(floor((i-1)*n/train_num+1));
end
 
% 开始训练样本
for i=1:maxgen
    gen=i;
    for j=1:train_num
        s_seq=floor((train_in(j)-min_in)/(max_in-min_in)*(size_n-1))+1;%量化空间S的序号
        w_seq=(s_seq-1)*(A_star-common_unit)+1;%权值序号
        ye(j)=sum(w(w_seq:w_seq+A_star-1));%实际输出        
        for k=w_seq:w_seq+A_star-1 %修正权值
            w(k)=w(k)+eta*(train_out(j)-ye(j))/A_star;
        end        
    end
    error=0;
    for j=1:train_num
        error=error+(train_out(j)-ye(j))^2;
    end
    mse(i)=error;
    if error<error_goal %误差达到目标值,退出训练
        break;
    end    
end
%检验训练好的网络
t2=x_test;% 自变量t
y2=y1_test;%因变量y
n=numel(t2);%自变量的位数
min_in=min(t2);%输入自变量最小值
max_in=max(t2);%输入自变量最大值
n=numel(t2);%自变量的位数
size_n=360;%量化等级,越大精度越高
for i=1:n
    s_seq=floor((t2(i)-min_in)/(max_in-min_in)*(size_n-1))+1;%S序号
    w_seq=(s_seq-1)*(A_star-common_unit)+1;%权值序号
    yp(i)=sum(w(w_seq:w_seq+A_star-1));
end
相关文章
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
224 4
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
328 5
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
327 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
157 0
|
2月前
|
传感器 机器学习/深度学习 数据采集
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
203 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
268 0

热门文章

最新文章