Meta2032系统开发(详细及程序)丨Meta2032开发源码版

简介:  Web 3.0 promotes the implementation of distributed economic models such as NFT,Defi,cryptocurrencies,and decentralized autonomous organizations(DAOs).The feature of Web 3.0 co construction and sharing is different from that of Web 2.0 where users are only users,enabling users in Web 3.0 to actively

 Web 3.0 promotes the implementation of distributed economic models such as NFT,Defi,cryptocurrencies,and decentralized autonomous organizations(DAOs).The feature of Web 3.0 co construction and sharing is different from that of Web 2.0 where users are only users,enabling users in Web 3.0 to actively participate in co construction and co governance,using blockchain technology and smart contracts to formulate and implement rules in the organizational form of DAO,and sharing the value of sharing platforms or protocols.

import onnxruntime as ort

加载 ONNX 模型

ort_session = ort.InferenceSession("model.onnx")

准备输入信息

input_info = ort_session.get_inputs()[0]
input_name = input_info.name
input_shape = input_info.shape
input_type = input_info.type

运行ONNX模型

outputs = ort_session.run(input_name, input_data)

获取输出信息

output_info = ort_session.get_outputs()[0]
output_name = output_info.name
output_shape = output_info.shape
output_data = outputs[0]

print("outputs:", outputs)
print("output_info :", output_info )
print("output_name :", output_name )
print("output_shape :", output_shape )
print("output_data :", output_data )

import torch
import torchvision.models as models
import onnx
import onnxruntime

加载 PyTorch 模型

model = models.resnet18(pretrained=True)
model.eval()

定义输入和输出张量的名称和形状

input_names = ["input"]
output_names = ["output"]
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)

将 PyTorch 模型转换为 ONNX 格式

torch.onnx.export(

model,  # 要转换的 PyTorch 模型
torch.randn(input_shape),  # 模型输入的随机张量
"resnet18.onnx",  # 保存的 ONNX 模型的文件名
input_names=input_names,  # 输入张量的名称
output_names=output_names,  # 输出张量的名称
dynamic_axes={input_names[0]: {0: "batch_size"}, output_names[0]: {0: "batch_size"}}  # 动态轴,即输入和输出张量可以具有不同的批次大小

)

加载 ONNX 模型

onnx_model = onnx.load("resnet18.onnx")
onnx_model_graph = onnx_model.graph
onnx_session = onnxruntime.InferenceSession(onnx_model.SerializeToString())

使用随机张量测试 ONNX 模型

x = torch.randn(input_shape).numpy()
onnx_output = onnx_session.run(output_names, {input_names[0]: x})[0]

print(f"PyTorch output: {model(torch.from_numpy(x)).detach().numpy()[0, :5]}")
print(f"ONNX output: {onnx_output[0, :5]}")

相关文章
|
4月前
|
XML JavaScript 前端开发
魔豹Meta Force佛萨奇项目系统开发解决程序方案
进入web.xml,添加配置 代码语言:javascript <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
移动端设计meta,这里可以存入代码库当中,meta初始化配置,初始化配置怎样写
移动端设计meta,这里可以存入代码库当中,meta初始化配置,初始化配置怎样写
|
安全 vr&ar 关系型数据库
Meta2032开发功能丨Meta2032系统开发(开发详细)丨Meta2032系统源码部署
 Web 3.0 infrastructure mainly includes node infrastructure, storage, oracle machines, security audits, data analysis platforms, wallets, development tools, etc. For example, the storage of assets on the wallet service user chain is an important entry point for Web 3.0, such as Metamarsk (Cryptocurr
|
Ubuntu Shell 开发工具
Meta佛萨奇2.0系统开发源码方案丨Meta魔豹联盟系统开发源码搭建
Meta佛萨奇2.0系统开发源码方案丨Meta魔豹联盟系统开发源码搭建
|
开发工具 iOS开发 MacOS
Meta佛萨奇2.0开发源码搭建丨Meta魔豹联盟系统开发源码技术搭建
Meta佛萨奇2.0开发源码搭建丨Meta魔豹联盟系统开发源码技术搭建
121 0
|
存储 人工智能 区块链
Meta Force佛萨奇2.0项目系统开发源码搭建技术
Meta Force佛萨奇2.0项目系统开发源码搭建技术
263 1
|
前端开发 JavaScript 索引
重学前端 35 # HTML标准分析
重学前端 35 # HTML标准分析
121 0
|
Web App开发 编解码 缓存
常用meta整理
常用meta整理
|
Web App开发 移动开发 前端开发