C++:哈希:闭散列哈希表

简介: 讲解了哈希的概念以及哈希函数,简单实现了闭散列哈希。闭散列哈希的重点之一是取模操作。

 哈希的概念

哈希表就是通过哈希映射,让key值与存储位置建立关联。比如,一堆整型{3,5,7,8,2,4}在哈希表的存储位置如图所示:

LI_@OG)7U8IQ}@Z02MZLPE3.png

插入数据的操作:

在插入数据的时候,计算数据相应的位置并进行插入。

查找数据的操作:

计算key值所在的位置,并判断该位置的值是否等于key,如果等于查找成功。

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称
为哈希表(Hash Table)(或者称散列表)

哈希冲突

所谓哈希冲突,就是前后插入的key值通过计算,得到的存储位置的地址是相同的,这种现象就是哈希冲突,也称为哈希碰撞。可以把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。比如在上面的图中,可以看到2和4都为哈希冲突现象。

哈希函数

引起哈希冲突的原因之一可能是哈希函数的设计不合理,即计算存储地址的算法出现了不合理。

哈希函数设计原则:

哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。哈希函数计算出来的地址能均匀分布在整个空间中。哈希函数应该比较简单。

常用的哈希函数:

①直接定址法:取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B。其优点是简单切数据分布均匀。其缺点是需要事先知道关键字的分布情况,因此直接定址法适用于数据小且连续的情况。

②除留余数法:设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址。

 

闭散列

为了解决哈希冲突,有闭散列和开散列两种常见方法。接下来先介绍闭散列。

闭散列也叫做开放定址法,当哈希冲突的时候,如果哈希表没有被装满,说明哈希表中有其它位置,那么就把key值存放到冲突位置的下一个空位置上。(这里的下一个位置,并不是说真正的下一个位置,而是往后找,找到一个空位置)。

线性探测

线性探测就是:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入步骤:①通过哈希函数获取待插入元素在哈希表中的位置。②如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素。

D7P{PV))84J8QS}I1X{8N3E.png

删除操作:采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。因此线性探测采用标记的伪删除法来删除一个元素。

闭散列哈希表的简单代码实现:

定义哈希表存储的节点,使用状态来表示闭散列中元素的删除或空位置。

//定义状态。用于插入删除操作
  enum State
  {
    EMPTY,
    EXIST,
    DELETE,
  };
  //每一个数据的节点
  template<class K,class V>
  struct HashData
  {
    pair<K, V> _kv;
    State _state = EMPTY;
  };

image.gif

插入操作:

插入操作的思路是拿着需要插入的数据进行取模,取模得到初步确认的下标。然后从这个下标开始寻找存储状态为EMPTY空的位置,然后插入数据。

负载因子:闭散列哈希表最好不能满,即留出一些空位置。因此我们通过负载因子来判断是否需要扩容。当负责因子大于等于0.7,即哈希表的位置已经使用了百分之七十的时候,就扩容。负责因子的计算方法是哈希表中有效数据个数/哈希表的大小。

扩容的方法:创建一个新的哈希对象,然后遍历旧的哈希表,根据旧的哈希表的数据来重新计算数据的位置。在新表插入数据的操作就是使用这个新的哈希对象调用insert函数即可。

bool Insert(const pair<K, V>& kv)
    {
      //如果存在了就直接返回false;
      if (Find(kv.first))
        return false;
      //负载因子如果大于0.7,则扩容
      if (_n * 10 / _tables.size() >= 7)
      {
        HashTable<K, V, Hash> newHt;
        //扩容原来的两倍
        newHt._tables.resize(_tables.size() * 2);
        //这一步是按照旧表中的数据插入到新表中
        for (auto& e : _tables)
        {
          //如果旧表中的数据存在,状态为EXIST,
          //那么让新表调用Insert函数,这不是递归哦!
          if (e._state == EXIST)
          {
            newHt.Insert(e._kv);
          }
        }
        //最后,让原本在vector中的旧表,与新表交换。
        _tables.swap(newHt._tables);
      }
      //不需要扩容
      Hash hf;
      //因为是泛型,不知道使用的类型是int还是char还是string
      //因此,需要获取该类型变量的值的整型,再去模size;
      size_t hashi = hf(kv.first) % _tables.size();
      while (_tables[hashi]._state == EXIST)
      {
        //线性探测
        ++hashi;
        hashi %= _tables.size();
      }
      _tables[hashi]._kv = kv;
      _tables[hashi]._state = EXIST;
      ++_n;
      return true;
    }

image.gif

删除操作:

由于直接将哈希表中的数据删除,会影响后续的其它操作,因此对于闭散列哈希表使用伪善处。把要删除的数据的状态置为DELETE即可。

bool Erase(const K& key)
    {
      Data* ret = Find(key);
      if (ret)
      {
        ret->_state = DELETE;
        --_n;
        return true;
      }
      else
      {
        return false;
      }
    }

image.gif

查找操作:

若要查找key值的话,先计算出下标,然后从这个位置开始遍历查找,当这个位置上的数据与key值相同并且其状态为EXIT,那么就返回地址。如果找不到返空指针。

Data* Find(const K& key)
    {
      Hash hf;
      size_t hashi = hf(key) % _tables.size();
      while (_tables[hashi]._state != EMPTY)
      {
        if ((_tables[hashi]._state == EXIST) && (_tables[hashi]._kv.first == key))
        {
          return &_tables[hashi];
        }
        ++hashi;
        hashi %= _tables.size();
      }
      return nullptr;
    }

image.gif

由于哈希表的数据类型是泛型,我们不知道要传入的数据类型是int还是string还是什么类型的,因此闭散列的难点之一是取模。因此我们要将key转化成整型,然后去取模。

如果原本就是整型,那么就直接返回这个值。如果是string类,那么就逐个将单个字符取出并累加起来,转为size_t类型做返回值。每获取一个字符,将其*31。因为对于字符串来说,冲突的可能很大,乘31减少冲突性。

代码如下:

template<class K>
struct HashFunc
{
  size_t operator()(const K& key)
  {
    return (size_t)key;
  }
};
//特化
template<>
struct HashFunc<string>
{
  size_t operator()(const string& key)
  {
    size_t hash = 0;
    for (auto ch : key)
    {
      hash *= 31;
      hash += ch;
    }
    return hash;
  }
};

image.gif

整体代码如下:

#pragma once
#include <iostream>
#include <vector>
#include <string>
using namespace std;
template<class K>
struct HashFunc
{
  size_t operator()(const K& key)
  {
    return (size_t)key;
  }
};
//特化
template<>
struct HashFunc<string>
{
  size_t operator()(const string& key)
  {
    size_t hash = 0;
    for (auto ch : key)
    {
      hash *= 31;
      hash += ch;
    }
    return hash;
  }
};
namespace closehash
{
  //定义状态。用于插入删除操作
  enum State
  {
    EMPTY,
    EXIST,
    DELETE,
  };
  //每一个数据的节点
  template<class K,class V>
  struct HashData
  {
    pair<K, V> _kv;
    State _state = EMPTY;
  };
  template<class K,class V,class Hash = HashFunc<K>>
  class HashTable
  {
    typedef HashData<K, V> Data;
  public:
    //初始化
    HashTable()
      :_n(0)
    {
      _tables.resize(10);
    }
    bool Insert(const pair<K, V>& kv)
    {
      //如果存在了就直接返回false;
      if (Find(kv.first))
        return false;
      //负载因子如果大于0.7,则扩容
      if (_n * 10 / _tables.size() >= 7)
      {
        HashTable<K, V, Hash> newHt;
        //扩容原来的两倍
        newHt._tables.resize(_tables.size() * 2);
        //这一步是按照旧表中的数据插入到新表中
        for (auto& e : _tables)
        {
          //如果旧表中的数据存在,状态为EXIST,
          //那么让新表调用Insert函数,这不是递归哦!
          if (e._state == EXIST)
          {
            newHt.Insert(e._kv);
          }
        }
        //最后,让原本在vector中的旧表,与新表交换。
        _tables.swap(newHt._tables);
      }
      //不需要扩容
      Hash hf;
      //因为是泛型,不知道使用的类型是int还是char还是string
      //因此,需要获取该类型变量的值的整型,再去模size;
      size_t hashi = hf(kv.first) % _tables.size();
      while (_tables[hashi]._state == EXIST)
      {
        //线性探测
        ++hashi;
        hashi %= _tables.size();
      }
      _tables[hashi]._kv = kv;
      _tables[hashi]._state = EXIST;
      ++_n;
      return true;
    }
    Data* Find(const K& key)
    {
      Hash hf;
      size_t hashi = hf(key) % _tables.size();
      while (_tables[hashi]._state != EMPTY)
      {
        if ((_tables[hashi]._state == EXIST) && (_tables[hashi]._kv.first == key))
        {
          return &_tables[hashi];
        }
        ++hashi;
        hashi %= _tables.size();
      }
      return nullptr;
    }
    bool Erase(const K& key)
    {
      Data* ret = Find(key);
      if (ret)
      {
        ret->_state = DELETE;
        --_n;
        return true;
      }
      else
      {
        return false;
      }
    }
  private:
    vector<Data> _tables;//将每个数据放到vector中
    size_t _n = 0;//哈希表中存储的有效数据的个数
  };
}

image.gif

相关文章
|
17天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
3月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
|
5月前
|
存储 搜索推荐 Serverless
【C++航海王:追寻罗杰的编程之路】哈希的应用——位图 | 布隆过滤器
【C++航海王:追寻罗杰的编程之路】哈希的应用——位图 | 布隆过滤器
45 1
|
5月前
|
存储 缓存 NoSQL
【C++】哈希容器
【C++】哈希容器
|
5月前
|
存储 Serverless C++
【C++航海王:追寻罗杰的编程之路】一篇文章带你认识哈希
【C++航海王:追寻罗杰的编程之路】一篇文章带你认识哈希
37 0
|
6月前
|
存储 Serverless C++
【C++】手撕哈希表的闭散列和开散列
【C++】手撕哈希表的闭散列和开散列
72 1
|
8月前
|
存储 人工智能 算法
从C语言到C++_32(哈希的应用)位图bitset+布隆过滤器+哈希切割(下)
从C语言到C++_32(哈希的应用)位图bitset+布隆过滤器+哈希切割
54 1
|
7月前
|
存储 C++ 容器
c++实现哈希桶
这篇文章回顾了闭散列的概念,指出在数据冲突时,闭散列会自动寻找后续未占用的位置插入数据。然而,这种方法可能导致某些元素状态变为删除,从而在查找时产生问题。为了解决这个问题,文章介绍了拉链法(哈希桶)作为改进策略。拉链法在每个哈希表位置上维护一个链表,冲突的数据挂载在相应位置的链表上。文章详细描述了拉链法的插入、查找和删除操作,并提供了相关代码示例。在插入过程中,当负载因子达到1时,哈希表会进行扩容,同时避免了频繁创建和销毁节点,提高了效率。最后,文章通过测试代码展示了拉链法的正确性。
|
11天前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
51 18
|
11天前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
37 13