基于matlab的分簇异构无线传感器网络选举协议

简介: 基于matlab的分簇异构无线传感器网络选举协议

1.算法描述

   为了进一步均衡网络能耗,延长网络生命周期,提出了一种基于最优分簇的能量异构无线传感器网络路由协议(OCRP)。OCRP协议考虑了最优簇首数K,将待测区域划分为K个固定分区,优化了成簇过程;在簇首选择阶段,充分考虑了节点的剩余能量、整个网络的能量以及节点与基站之间的距离,改进了簇头选举机制。

2.仿真效果预览
matlab2022a仿真结果如下:

3ee0cd2066a1f92e038d62f985cee985_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
accdb070490c2f11ed18f236e5145c4e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
973917a391ef9ca521c9ba1fc7cab8b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

%counter for CHs per round
rcountCHs=0;
cluster=1;
t=0;
countCHs;
rcountCHs=rcountCHs+countCHs;
flag_first_dead=0;
 
for r=0:1:rmax
    r;
 
  %Election Probability for Normal Nodes
  pnrm=( p/ (1+a*m) );
  %Election Probability for Advanced Nodes
  padv= ( p*(1+a)/(1+a*m) );
    
  %Operation for heterogeneous epoch
  if(mod(r, round(1/pnrm) )==0)
    for i=1:1:n
        S(i).G=0;
        S(i).cl=0;
    end
  end
 
 %Operations for sub-epochs
 if(mod(r, round(1/padv) )==0)
    for i=1:1:n
        if(S(i).ENERGY==1)
            S(i).G=0;
            S(i).cl=0;
        end
    end
  end
 
 
%hold off;
 
%Number of dead nodes
dead=0;
%Number of dead Advanced Nodes
dead_a=0;
%Number of dead Normal Nodes
dead_n=0;
 
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
%counter for bit transmitted to Bases Station and to Cluster Heads 
%per round
PACKETS_TO_CH(r+1)=0;
PACKETS_TO_BS(r+1)=0;
 
figure;
 
for i=1:1:n
    %checking if there is a dead node
    if (S(i).E<=0)
        plot(S(i).xd,S(i).yd,'red .');
        dead=dead+1;
        if(S(i).ENERGY==1)
            dead_a=dead_a+1;
        end
        if(S(i).ENERGY==0)
            dead_n=dead_n+1;
        end
        hold on;    
    end
    if S(i).E>0
        S(i).type='N';
        if (S(i).ENERGY==0)  
        plot(S(i).xd,S(i).yd,'o');
        end
        if (S(i).ENERGY==1)  
        plot(S(i).xd,S(i).yd,'+');
        end
        hold on;
    end
end
plot(S(n+1).xd,S(n+1).yd,'ks');
 
 
STATISTICS(r+1).DEAD=dead;
DEAD(r+1)=dead;
DEAD_N(r+1)=dead_n;
DEAD_A(r+1)=dead_a;
 
%When the first node dies
if (dead==1)
    if(flag_first_dead==0)
        first_dead=r
        flag_first_dead=1;
    end
end
 
countCHs=0;
cluster=1;
for i=1:1:n
    if(S(i).far~=-1)
    if(S(i).E>0 )
   temp_rand=rand;     
   if ( (S(i).G)<=0)
 
 %Election of Cluster Heads for normal nodes
 if( ( S(i).ENERGY==0 && ( temp_rand <= ( pnrm / ( 1 - pnrm * mod(r,round(1/pnrm)) )) ) )  )
 
            countCHs=countCHs+1;
            packets_TO_BS=packets_TO_BS+1;
            PACKETS_TO_BS(r+1)=packets_TO_BS;
            
            S(i).type='C';
            S(i).G=100;
            C(cluster).xd=S(i).xd;
            C(cluster).yd=S(i).yd;
            plot(S(i).xd,S(i).yd,'k*');
            
            distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
            C(cluster).distance=distance;
            C(cluster).id=i;
            X(cluster)=S(i).xd;
            Y(cluster)=S(i).yd;
            cluster=cluster+1;
            
            %Calculation of Energy dissipated
            distance;
            if (distance>do)
                S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S(i).E=S(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
    
 
 
 %Election of Cluster Heads for Advanced nodes
 if( ( S(i).ENERGY==1 && ( temp_rand <= ( padv / ( 1 - padv * mod(r,round(1/padv)) )) ) )  )
相关文章
|
2天前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
15 3
|
7天前
|
数据采集 网络协议 API
HTTP协议大揭秘!Python requests库实战,让网络请求变得简单高效
【9月更文挑战第13天】在数字化时代,互联网成为信息传输的核心平台,HTTP协议作为基石,定义了客户端与服务器间的数据传输规则。直接处理HTTP请求复杂繁琐,但Python的`requests`库提供了一个简洁强大的接口,简化了这一过程。HTTP协议采用请求与响应模式,无状态且结构化设计,使其能灵活处理各种数据交换。
35 8
|
6天前
|
网络协议
UDP协议在网络通信中的独特应用与优势
UDP(用户数据报协议)作为关键的传输层协议,在网络通信中展现出独特优势。本文探讨UDP的无连接性及低开销特性,使其在实时性要求高的场景如视频流、在线游戏中表现优异;其不保证可靠交付的特性赋予应用程序自定义传输策略的灵活性;面向报文的高效处理能力及短小的包头设计进一步提升了数据传输效率。总之,UDP适用于高速、实时性强且对可靠性要求不高的应用场景,为网络通信提供了多样化的选择。
|
7天前
|
网络协议 网络架构 数据格式
TCP/IP基础:工作原理、协议栈与网络层
TCP/IP(传输控制协议/互联网协议)是互联网通信的基础协议,支持数据传输和网络连接。本文详细阐述了其工作原理、协议栈构成及网络层功能。TCP/IP采用客户端/服务器模型,通过四个层次——应用层、传输层、网络层和数据链路层,确保数据可靠传输。网络层负责IP寻址、路由选择、分片重组及数据包传输,是TCP/IP的核心部分。理解TCP/IP有助于深入掌握互联网底层机制。
32 2
|
1天前
|
Python
HTTP协议不再是迷!Python网络请求实战,带你走进网络世界的奥秘
本文介绍了HTTP协议,它是互联网信息传递的核心。作为客户端与服务器通信的基础,HTTP请求包括请求行、头和体三部分。通过Python的`requests`库,我们可以轻松实现HTTP请求。本文将指导你安装`requests`库,并通过实战示例演示如何发送GET和POST请求。无论你是想获取网页内容还是提交表单数据,都能通过简单的代码实现。希望本文能帮助你在Python网络请求的道路上迈出坚实的一步。
8 0
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
8天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
13天前
|
网络协议
网络协议概览:HTTP、UDP、TCP与IP
理解这些基本的网络协议对于任何网络专业人员都是至关重要的,它们不仅是网络通信的基础,也是构建更复杂网络服务和应用的基石。网络技术的不断发展可能会带来新的协议和标准,但这些基本协议的核心概念和原理将继续是理解和创新网络技术的关键。
28 0
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
106 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码