基于SIFT特征提取的图像特征提取配准和拼接matlab仿真

简介: 基于SIFT特征提取的图像特征提取配准和拼接matlab仿真

1.算法描述

  SIFT 是一种从图像中提取独特不变特征的方法,其特点为基于图像的一些局部特征,而与图像整体的大小和旋转无关。并且该方法对于光照、噪声、仿射变换具有一定鲁棒性,同时能生成大量的特征点。SIFT (Scale-invariant feature transform), 尺度不变特征转换,是一种图像局部特征提取算法,它通过在不同的尺度空间中寻找极值点(特征点,关键点)的精确定位和主方向,构建关键点描述符来提取特征。

   SIFT提取的关键点具有尺度不变性、旋转不变性,而且不会因光照、仿射变换和噪音等因素而干扰。SIFT所查找到的关键点是一些十分突出、不会因光照、仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。
  1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
  2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
  3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;
  4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;
  5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png

3.MATLAB核心程序

 
 
[des1, loc1] = sift(img1);
[des2, loc2] = sift(img2);
 
distRatio = 0.6;   
 
% For each descriptor in the first image, select its match to second image.
des2t = des2';                          % Precompute matrix transpose
matchTable = zeros(1,size(des1,1));
for i = 1 : size(des1,1)
   dotprods = des1(i,:) * des2t;        % Computes vector of dot products
   [vals,indx] = sort(acos(dotprods));  % Take inverse cosine and sort results
 
   % Check if nearest neighbor has angle less than distRatio times 2nd.
   if (vals(1) < distRatio * vals(2))
      matchTable(i) = indx(1);
   else
      matchTable(i) = 0;
   end
end
 
img3 = appendimages(img1,img2);
 
% Show a figure with lines joining the accepted matches.
figure('Position', [100 100 size(img3,2) size(img3,1)]);
colormap('gray');
imagesc(img3);
hold on;
cols1 = size(img1,2);
for i = 1: size(des1,1)
  if (matchTable(i) > 0)
    line([loc1(i,2) loc2(matchTable(i),2)+cols1], ...
         [loc1(i,1) loc2(matchTable(i),1)], 'Color', 'c');
  end
end
hold off;
num = sum(matchTable > 0);
fprintf('Found %d matches.\n', num);
 
idx1 = find(matchTable);
idx2 = matchTable(idx1);
x1 = loc1(idx1,2);
x2 = loc2(idx2,2);
y1 = loc1(idx1,1);
y2 = loc2(idx2,1);
 
matchLoc1 = [x1,y1];
matchLoc2 = [x2,y2];
相关文章
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
268 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
132 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
117 0
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
132 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
172 8
|
2月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)

热门文章

最新文章