一.题目
二.思路一(动态规划思想)
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 。持有股票之后哪还有现金呢?其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。dp[i][1] 表示第i天不持有股票所得最多现金。
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态。
2.确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
这样递推公式我们就分析完了
3.dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出其基础都是要从dp[0][0]和dp[0][1]推导出来。那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4.确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
5.举例推导dp数组
以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下
dp[5][1]就是最终结果。为什么不是dp[5][0]呢?
因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!
以上分析完毕,C++代码如下:
// 版本一 class Solution { public: int maxProfit(vector<int>& prices) { int len = prices.size(); if (len == 0) return 0; vector<vector<int>> dp(len, vector<int>(2)); dp[0][0] -= prices[0]; dp[0][1] = 0; for (int i = 1; i < len; i++) { dp[i][0] = max(dp[i - 1][0], -prices[i]); dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]); } return dp[len - 1][1]; } };
- 时间复杂度:O(n)
- 空间复杂度:O(n)
思路二(暴力穷举法)
该方法超时,但是还是有必要发一下,要是有的题目对时间没有限制呢?
class Solution { public: int maxProfit(vector<int>& prices) { int result = 0; for (int i = 0; i < prices.size(); i++) { for (int j = i + 1; j < prices.size(); j++){ result = max(result, prices[j] - prices[i]); } } return result; } };
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
思路三(贪心算法)
这是个好方法
因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。
C++代码如下:
class Solution { public: int maxProfit(vector<int>& prices) { int low = INT_MAX; int result = 0; for (int i = 0; i < prices.size(); i++) { low = min(low, prices[i]); // 取最左最小价格 result = max(result, prices[i] - low); // 直接取最大区间利润 } return result; } };
- 时间复杂度:O(n)
- 空间复杂度:O(1)