数据结构和算法之图的遍历

简介: 6.2 图的遍历 6.2.1 图的遍历——DFS 遍历:把图里面每个顶点都访问一遍而且不能有重复的访问 深度优先搜索(DFS) 当访问完了一个节点所有的灯后,一定原路返回对应着堆栈的出栈入栈的一个行为 深度优先搜索的算法描述void DFS(Vertex V)//从迷宫的节点出来{visited[V] = true;//给每个节点一个变量,true相当于灯亮了,false则是熄灭状态for(V的每个邻接点W)//视野看得到的灯if(!visited[W])//检测是否还有没点亮的DFS(W);//递归调用}//类似树的先序遍历若有N个顶点、E条边,时间复杂度是用邻

6.2 图的遍历

6.2.1 图的遍历——DFS

遍历:把图里面每个顶点都访问一遍而且不能有重复的访问

深度优先搜索(DFS)

当访问完了一个节点所有的灯后,一定原路返回对应着堆栈的出栈入栈的一个行为

深度优先搜索的算法描述

void DFS(Vertex V)//从迷宫的节点出来

{

visited[V] = true;//给每个节点一个变量,true相当于灯亮了,false则是熄灭状态

for(V的每个邻接点W)//视野看得到的灯

if(!visited[W])//检测是否还有没点亮的

DFS(W);//递归调用

}

//类似树的先序遍历

若有N个顶点、E条边,时间复杂度是

用邻接表存储图,有O(N+E)//对每个点访问了一次,每条边也访问了一次

用邻接矩阵存储图,有O(N²)//V对应的每个邻接点W都要访问一遍

6.2.2 图的遍历——BFS

广度优先搜索(Breadth First Search,BFS)

void BFS(Vertex V)

{

visited[V] = true;

Enqueue(V,Q);//压到队列里

while(!IsEmpty(Q)){

V = Dequeue(Q);//每次循环弹出一个节点

for(V的每个邻接点W)

if(!visited[W]){//没有访问过的去访问将其压入队列中

visited[W] = true;

Enqueue(W,Q);

}

}

}

若有N个顶点,E条边,时间复杂度是

用邻接表存储图,有O(N+E)

用邻接矩阵存储图,有O(N²)

实例说明

第1步:访问A。

2步:访问(A的邻接点)C。在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。

但在本文的实现中,顶点ABCDEFG是按照顺序存储,C"DF"的前面,因此,先访问C

3步:访问(C的邻接点)B。在第2步访问C之后,接下来应该访问C的邻接点,即"BD"中一个(A已经被

访问过,就不算在内)。而由于BD之前,先访问B

4步:访问(C的邻接点)D。在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到

访问C的另一个邻接点D

5步:访问(A的邻接点)F。 前面已经访问了A,并且访问完了"A的邻接点B的所有邻接点(包括递归的邻

接点在内)";因此,此时返回到访问A的另一个邻接点F

6步:访问(F的邻接点)G

7步:访问(G的邻接点)E

因此访问顺序是:A -> C -> B -> D -> F -> G -> E

当然,上图是基于无向图,具体的代码在文章后面实现。

广度优先搜索

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索""横向优先搜索",简称BFS

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这

些邻接点出发依次访问它们的邻接点,并使得先被访问的顶点的邻接点先于后被访问的顶点的邻接点被

访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另

选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为

1,2…的顶点。

实例说明

第1步:访问A。

2步:依次访问C,D,F。在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点

ABCDEFG按照顺序存储的,C"DF"的前面,因此,先访问C。再访问完C之后,再依次访问D,F

3步:依次访问B,G。在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再

访问F的邻接点G

4步:访问E。在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻

接点E

因此访问顺序是:A -> C -> D -> F -> B -> G -> E。

6.2.3 图的遍历——为什么需要两种遍历

在不同的情况下效率不同

广度跟深度的区别

  • 1. 深度是直接一条路走到黑,碰壁没路走了在返回
  • 2. 广度是一圈一圈的扫描过去,虽然前面还有路也不会强行深入

6.2.4 图的遍历——图不连通怎么办

连通:如果从V到W存在一条(无向)路径,则称V与W是连通的

路径VW路径是一系列顶点{V,v1,v2,....,vn,W}的集合,其中任一对相邻的顶点间都有图中的边。

路径的长度是路径中的边数(如果带权(带权图),则是所有边的权重和)。如果V到W之间的所有顶点都不同, 则称为简单路径(有回路就不是简单路径)

回路:起点等于终点的路径

连通图:图中任意两顶点均连通

连通分量:无向图的极大连通子图

  • 1. 极大顶点数:再加1个顶点就不连通了
  • 2. 极大边数:包含子图中所有顶点相连的所有边

对有向图

//强连通:有向图中顶点VW之间存在双向路径,则称VW是强连通的(路径可以不同同一条,但是一定是连

通的)

//强连通图:有向图中任意两顶点均强连通

//强连通分量:有向图的极大强连通子图

//弱连通图:将强连通图的所有边的方向抹掉变成无向图就是连通的了

每调用一次DFS(V),就把V所在的连通分量遍历了一遍,BFS也一样

void DFS(Vertex V){

visited[V] = true;

for(V的每个邻接点W)

if(!visited[W])

DFS(W);

}

遍历分量

void ListComponents(Graph G){

for(each V in G)

if(!visited[V]){

DFS(V);//or BFS(V)

}

}

6.3 应用实例:拯救007

void Save007(Graph G)

{

for(each V in G){

if(!visited[V] && FirstJump(V)){//这个FirstJump(V)是007第一跳有没有可能从孤岛

跳到V上有没有可能,有且没踩过就跳上去

answer = DFS(V);//or BFS(V)

if(answer == YES) break;0

}

}

if(answer == YES) output("Yes");

else output("No");

}

DFS算法

void DFS(Vertex V)

{

visited[V] = true;//表示鳄鱼头踩过了

for(V的每个邻接点W)

if(!visited[W])

DFS(W);//递归

}

改良版本

void DFS(Vertex V)

{

visited[V] = true;//表示鳄鱼头踩过了

if(IOsSafe(V)) answer = YES;

else{

for(each W in G )

if(!visited[W] && Jump(V,W)){//可以从V jump跳到这个w上面,作用是算V到W之间的距

离是不是小于007可以跳跃最大距离

answer = DFS(W);//递归

if(answer == YES) break;

}

}

return answer;

}

6.4 应用实例:六度空间(Six Degrees of Separation)

理论:

  1. 你和任何一个陌生人之间所间隔的人不会超过6个
  2. 给定社交网络图,请对每个节点计算符合"六度空间"理论的结点占结点总数的百分比

算法思路

1.对每个节点进行广度优先搜索

2.搜索过程中累计访问的节点数

3.需要记录"层",仅计算6层以内的节点数

void SDS()

{

for(each V in G){

count += BFS(V);

Output = (count/N);

}

}

//结合最初的BFS

void BFS(Vertex V)

{

visited[V] = true;count = 1;

Enqueue(V,Q);//压到队列里

while(!IsEmpty(Q)){

V = Dequeue(Q);//每次循环弹出一个节点

for(V的每个邻接点W)

if(!visited[W]){//没有访问过的去访问将其压入队列中

visited[W] = true;

Enqueue(W,Q);count++;

}

}return count;

}

另外的解决方案

int BFS(Vertex V)

{

vistex[V] = true;count = 1;

level = 0;last = V;

Enqueue(V,Q);

while(!IsEmpty(Q)){

V = Dequeue(Q);

for( V的每个邻接点W)

if(!visited[W]){

visited[W] = true;

Enqueue(W,Q);count++;

tail = W;

}

if(V == last ){

level++;last = tail;

}

}

return count++;

}

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
68 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
162 4
|
12天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
36 2
|
28天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
57 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
11天前
|
数据采集 存储 算法
【C++数据结构——图】图的遍历(头歌教学实验平台习题) 【合集】
本文介绍了图的遍历算法,包括深度优先遍历(DFS)和广度优先遍历(BFS)。深度优先遍历通过递归方式从起始节点深入探索图,适用于寻找路径、拓扑排序等场景;广度优先遍历则按层次逐层访问节点,适合无权图最短路径和网络爬虫等应用。文中提供了C++代码示例,演示了如何实现这两种遍历方法,并附有测试用例及结果,帮助读者理解和实践图的遍历算法。
26 0
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
81 1
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。

热门文章

最新文章