利用yaml定义卷积网络【附代码】

简介: 笔记

在平常看一些卷积神经网络的时候,大多数都是直接通过写一个Model类来定义的,这样写的代码其实是比较好懂的,特别是在魔改网络的时候也很方便。然后也有一些会通过cfg配置文件进行模型的定义。在yolov5中可以看到是通过yaml文件进行网络的定义【个人感觉通过配置文件魔改网络有些不方便,当然每个人习惯不同】,可能很多人也用过,如果自己去写一个yaml文件,自己能不能定义出来呢?很多人不知道是如何具体通过yaml文件将里面的参数传入自己定义的网络中,这也就给自己修改网络带来了不便。这篇文章将仿照yolov5的方式,利用yaml定义一个自己的网络。


定义卷积块


我们可以先定义一个卷积块CBL,C指卷积Conv,B指BN层,L为激活函数,这里我用ReLu.

class BaseConv(nn.Module):
    def __init__(self, in_channels, out_channels, k=1, s=1, p=None):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.conv = nn.Conv2d(in_channels, out_channels, k, s, autopad(k, p))
        self.bn = nn.BatchNorm2d(out_channels)
        self.act_fn = nn.ReLU(inplace=True)
    def forward(self, x):
        return self.act_fn(self.bn(self.conv(x)))

卷积中的autopad是自动补充pad,代码如下:

def autopad(k, p=None):
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
    return p

定义一个Bottleneck


可以仿照yolov5定义一个Bottleneck,参考了残差块的思想。

class Bottleneck(nn.Module):
    def __init__(self, in_channels, out_channels, shortcut=True):
        super(Bottleneck, self).__init__()
        self.conv1 = BaseConv(in_channels, out_channels, k=1, s=1)
        self.conv2 = BaseConv(out_channels, out_channels, k=3, s=1)
        self.add = shortcut and in_channels == out_channels
    def forward(self, x):
        """
        x-->conv1-->conv2-->add
          |_________________|
        """
        return x + self.conv2(self.conv1(x)) if self.add else self.conv2(self.conv1(x))

攥写yaml配置文件


然后我们来写一下yaml配置文件,网络不要很复杂,就由两个卷积和两个Bottleneck组成就行。同理,仿v5的方法,我们的网络中的backone也是个列表,每行为一个卷积层,每列有4个参数,分别代表from(指该层的输入通道数为上一层的输出通道数,所以是-1),number【yaml中的1,1,2指该层的深度,或者说是重复几次】,Module_nams【该层的名字】,args【网络参数,包含输出通道数,k,s,p等设置】

# define own model
backbone:
  [[-1, 1, BaseConv, [32, 3, 1]],  # out_channles=32, k=3, s=1
   [-1, 1, BaseConv, [64, 1, 1]],
   [-1, 2, Bottleneck, [64]]
  ]

我们现在用yaml工具来打开我们的配置文件,看看都有什么内容

    import yaml
    # 获得yaml文件名字
    yaml_file = Path('Model.yaml').name
    with open(yaml_file,errors='ignore') as f:
        yaml_ = yaml.safe_load(f)
    print(yaml_)

输出:


{'backbone': [[-1, 1, 'BaseConv', [32, 3, 1]], [-1, 1, 'BaseConv', [64, 1, 1]], [-1, 2, 'Bottleneck', [64]]]}


然后我们可以定义下自己Model类,也就是定义自己的网络。可以看到与前面读取yaml文件相比,多了一行    ch = self.yaml["ch"] = self.yaml["ch"] = 3   这个是在原yaml内容中加入一个key和valuse,3指的3通道,因为我们的图像是3通道。parse_model是下面要说的传参过程。

class Model(nn.Module):
    def __init__(self, cfg='./Model.yaml', ch=3, ):
        super().__init__()
        self.yaml = cfg
        import yaml
        yaml_file = Path(cfg).name
        with open(yaml_file, errors='ignore')as f:
            self.yaml = yaml.safe_load(f)
        ch = self.yaml["ch"] = self.yaml["ch"] = 3
        self.backbone = parse_model(deepcopy(self.yaml), ch=[ch])
    def forward(self, x):
        output = self.backbone(x)
        return output

传入参数


这一步也是最关键的一步,我们需要定义传参的函数,将yaml中的卷积参数传入我们定义的网络中,这里会用的一个非常非常重要的函数eval(),后面也会介绍到这个函数的用法。

这里先附上完整代码:

def parse_model(yaml_cfg, ch):
    """
    :param yaml_cfg: yaml file
    :param ch: init in_channels default is 3
    :return: model
    """
    layer, out_channels = [], ch[-1]
    for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):
        """
        f:上一层输出通道
        number:该模块有几层,就是该模块要重复几次
        Mdule_name:卷积层名字
        args:参数,包含输出通道数,k,s,p等
        """
        # 通过eval,将str类型转自己定义的BaseConv
        m = eval(Module_name) if isinstance(Module_name, str) else Module_name
        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a
        # 更新通道
        # args[0]是输出通道
        if m in [BaseConv, Bottleneck]:
            in_channels, out_channels = ch[f], args[0]
            args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]
        # 将参数传入模型
        model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)
        # 更新通道列表,每次获取输出通道
        ch.append(out_channels)
        layer.append(model_)
    return nn.Sequential(*layer)

下面开始分析代码 。


这行代码是通过列表用来存放每层内容以及输出通道数。


# 这行代码是通过列表用来存放每层内容以及输出通道数
layer, out_channels = [], ch[-1]

然后进入我们的for循环,在每一次循环中可以获得我们yaml文件中的每一层网络:f是上一层网络的输出通道【用来作为本层的输入通道】,number【网络深度,也就是该层重复几次而已】,Module_name是该层的名字,args是该层的一些参数。


for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):

接下来会碰到一个很重要的函数eval()。下行的代码首先需要判断一下我们的Module_name类型是不是字符串类型,也就是判断一下yaml中“BaseConv”是不是字符串类型,如果是,则用eval进行对应类型的转化,转成我们的BaseConv类型。


m = eval(Module_name) if isinstance(Module_name, str) else Module_name

这里我将对eval函数在深入点,如果知道这个函数用法的,就可以略去这部分。


我们先举个例子,比如我现在有个变量a="123",这个a的类型是什么呢?他是一个str类型,不是int类型。 现在我们用eval函数转一下,看看会变成什么样子。


>>> b = eval(a) if isinstance(a,str) else a
>>> b
123
>>> type(b)
<class 'int'>

我们可以看到,经过eval函数以后,会自动识别并转为int类型。那么我继续举例子,如果现在a="BaseConv",经过eval以后会变成什么?可以看到,这里报错了!这是为什么?这是因为我们没有导入BaseConv这个类,所以eval函数并不知道我们希望转为什么类型。所以我们需要用import导入BaseConv这个类才可以。


>>> a="BaseConv"
>>> b = eval(a) if isinstance(a,str) else a
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<string>", line 1, in <module>
NameError: name 'BaseConv' is not defined

当我们导入BaseConv以后,在经过eval就可以获得:


<class 'models.BaseConv'>


接下来是获得args中的网络参数,也是通过eval进行转化


   

for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a

获取通道数,并在每次循环中对通道进行更新:可以仔细看一下ch[f]指的上一层输出通道,刚开始默认为[3],那么ch[-1]=3,我们yaml中第一层的BaseConv args[0]为32,表示输出32通道。因此在第一次循环中有in_channels = 3,out_channels=32。args也要更新,*args前面的"*"并不是指针的意思,也不是乘的意思,而是解压操作,因此我们第一次循环中得到的args=[3,32,3,1]。


# 更新通道
# args[0]是输出通道
if m in [BaseConv, Bottleneck]:
    in_channels, out_channels = ch[f], args[0]
    args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]

将参数传入模型


这里用for _ in range(number)来判断网络的深度【或者说该模块重复几次】,这里的m就是前面经过eval转化的 <class 'models.BaseConv'>。通过*args解压操作将args列表中的内容放入m中,再通过*解压操作放入nn.Sequential。


model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)

这样就可以获得我们第一次循环BaseConv了。后面的循环也是同样的反复操作而已。


BaseConv(
  (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (act_fn): ReLU(inplace=True)
)

然后是更新通道列表和layer列表,为的是获取每次循环的输出通道,没有这一步,再下一次循环的时候将不能正确得到通道数。


# 更新通道列表,每次获取输出通道
ch.append(out_channels)
layer.append(model_)

然后我们就可以对模型调用进行实例化了,可以打印下模型:


Model(
  (backbone): Sequential(
    (0): BaseConv(
      (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (1): BaseConv(
      (conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (2): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
      )
      (1): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
      )
    )
  )
)


同时我们也可以对模型每层可视化看一下。可以看到和我们定义的模型是一样的。

8.png

上述完整的代码:

from copy import deepcopy
from models import BaseConv, Bottleneck
import torch.nn as nn
import os
path = os.getcwd()
from pathlib import Path
import torch
def parse_model(yaml_cfg, ch):
    """
    :param yaml_cfg: yaml file
    :param ch: init in_channels default is 3
    :return: model
    """
    layer, out_channels = [], ch[-1]
    for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):
        """
        f:上一层输出通道
        number:该模块有几层,就是该模块要重复几次
        Mdule_name:卷积层名字
        args:参数,包含输出通道数,k,s,p等
        """
        # 通过eval,将str类型转自己定义的BaseConv
        m = eval(Module_name) if isinstance(Module_name, str) else Module_name
        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a
        # 更新通道
        # args[0]是输出通道
        if m in [BaseConv, Bottleneck]:
            in_channels, out_channels = ch[f], args[0]
            args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]
        # 将参数传入模型
        model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)
        # 更新通道列表,每次获取输出通道
        ch.append(out_channels)
        layer.append(model_)
    return nn.Sequential(*layer)
class Model(nn.Module):
    def __init__(self, cfg='./Model.yaml', ch=3, ):
        super().__init__()
        self.yaml = cfg
        import yaml
        yaml_file = Path(cfg).name
        with open(yaml_file, errors='ignore')as f:
            self.yaml = yaml.safe_load(f)
        ch = self.yaml["ch"] = self.yaml["ch"] = 3
        self.backbone = parse_model(deepcopy(self.yaml), ch=[ch])
    def forward(self, x):
        output = self.backbone(x)
        return output
if __name__ == "__main__":
    cfg = path + '/Model.yaml'
    model = Model()
    model.eval()
    print(model)
    x = torch.ones(1, 3, 512, 512)
    output = model(x)
    torch.save(model, "model.pth")
    # model = torch.load('model.pth')
    # model.eval()
    # x = torch.ones(1,3,512,512)
    # input_name = ['input']
    # output_name = ['output']
    # torch.onnx.export(model, x, 'myonnx.onnx', verbose=True)
目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
222 55
|
2月前
|
安全 网络安全 数据安全/隐私保护
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限。它通过设置一系列规则,控制谁可以访问特定资源、在什么条件下访问以及可以执行哪些操作。ACL 可以应用于路由器、防火墙等设备,分为标准、扩展、基于时间和基于用户等多种类型,广泛用于企业网络和互联网中,以增强安全性和精细管理。
284 7
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
163 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
91 3
图卷积网络入门:数学基础与架构设计
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
315 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
61 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
安全 网络安全 数据安全/隐私保护
访问控制列表(ACL)是网络安全管理的重要工具,用于定义和管理网络资源的访问权限。
访问控制列表(ACL)是网络安全管理的重要工具,用于定义和管理网络资源的访问权限。ACL 可应用于路由器、防火墙等设备,通过设定规则控制访问。其类型包括标准、扩展、基于时间和基于用户的ACL,广泛用于企业网络和互联网安全中,以增强安全性、实现精细管理和灵活调整。然而,ACL 也存在管理复杂和可能影响性能的局限性。未来,ACL 将趋向智能化和自动化,与其他安全技术结合,提供更全面的安全保障。
123 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。